Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (2): 126-136    DOI: 10.11901/1005.3093.2024.039
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Microwave Absorption Properties of NiCo@C(N)/NC Nanocomposites
BAO Xiukun1, SHI Guimei2()
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 School of Science, Shenyang University of Technology, Shenyang 110870, China
Cite this article: 

BAO Xiukun, SHI Guimei. Preparation and Microwave Absorption Properties of NiCo@C(N)/NC Nanocomposites. Chinese Journal of Materials Research, 2025, 39(2): 126-136.

Download:  HTML  PDF(9593KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanocomposites NiCo@C(N)/NC were fabricated by a two-step method, that is, NiCo@C(N) nanocapsules were first prepared by arc-discharge technique, next dopamine (DA) was self-polymerized on NiCo@C(N) surface, which then were subjected to post-heat treatment. The study focuses on the effect of the dopamine content on the microwave absorption performance of the nanocomposites. The acquired nanocomposites NiCo@C(N)/NC were characterized by means of X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and vector network analyzer in terms of their phase composition, microstructure, and electromagnetic properties etc. The results show that the NiCo@C(N)/NC nanocomposites possess excellent wave-absorbing properties when the mass ratio of NiCo@C(N) to DA is 1∶2. Accordingly, the optimal reflection loss is -38.87 dB at a thickness of 3.17 mm and a frequency of 6.61 GHz. It achieves an effective absorption bandwidth of 4.93 GHz when the coating is matched to a thickness of 1.67 mm. The NiCo@C(N)/NC nanocomposites exhibit excellent wave absorbing performance due to the heterogeneous structure of N-doped carbon, defective induced dipole polarization, and the formation of a conductive network, all of which contribute to its high dielectric loss capability. Also, the appropriate amount of N-doped graphitic carbon can effectively improve the electromagnetic synergy effect between the NiCo core and the nitrogen-doped carbon double-shell, thus optimize the impedance matching of the nanocomposites.

Key words:  composites      N doping carbon      NiCo alloys      microwave absorption properties     
Received:  16 January 2024     
ZTFLH:  TB332  
Fund: Natural Science Foundation of Liaoning Province(20180550564)
Corresponding Authors:  SHI Guimei, Tel: (024)25496502, E-mail: gmshi@sut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.039     OR     https://www.cjmr.org/EN/Y2025/V39/I2/126

Fig.1  XRD patterns of N0, N1, N2, and N3 nanocomposites
Fig.2  Raman spectrums of N0, N1, N2, and N3 nanocomposites
Fig.3  XPS spectrum of N2 (a) survey, (b) Ni 2p, (c) Co 2p, (d) C 1s and (e) N 1s
Fig.4  TEM images of the N0 (a) and N2 (c) and HRTEM images of N0 (b) and N2 (d)
Fig.5  Complex permittivity (a, b) and permeability (c, d) versus frequency for N0, N1, N2, and N3 nanocomposites
Fig.6  Reflection loss curves for the N0 (a, b), N1 (c, d), N2 (e, f), and N3 (g, h) nanocomposites
Sample

Filler ratio

/ %, mass fraction

RLmin / dBEAB / GHzThickness / mmRef.
CoNi/NPC50-66.04.562.07[27]
CoNi@SiO2@C50-46.05.602.2[28]
Ni@C50-35.03.602.0[29]
CoNi@PRM-NC35-56.03.681.7[30]
NiFe@C30-51.03.972.2[31]
Table 1  Microwave absorption performance of microwave absorption materials reported in literatures
Fig.7  Cole-Cole semicircles plots for the N0 (a), N1 (b), N2 (c), and N3 (d) nanocomposites
Fig.8  C0 curves for the N0, N1, N2, and N3 nanocomposites
Fig.9  Impedance matching for the N0 (a), N1 (b), N2 (c), and N3 (d) nanocomposites
Fig.10  Attenuation constant for the N0, N1, N2, and N3 nanocomposites
1 Gao Z G, Lan D, Zhang L M, et al. Simultaneous manipulation of interfacial and defects Polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption [J]. Adv. Funct. Mater., 2021, 31(50): 2106677
2 Wang B L, Chen H Y, Wang S, et al. Construction of core-shell structured Co7Fe3@C nanocapsules with strong wideband microwave absorption at ultra-thin thickness [J]. Carbon, 2021, 184: 223
3 Sun C H, Jia Z R, Xu S, et al. Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 113: 128
doi: 10.1016/j.jmst.2021.11.006
4 Wang J Y, Wang Z H, Liu R G, et al. Heterogeneous interfacial polarization in Fe@ZnO nanocomposites induces high-frequency microwave absorption [J]. Mater. Lett., 2017, 209: 276
5 Wang Z J, Jiang H T. Core-shell FeNi@SiO2 composite with enhanced microwave absorption performance [J]. J. Alloys Compd., 2022, 923: 166468
6 Liu Y, Liu X H, E X Y, et al. Synthesis of Mn x O y @C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption [J]. J. Mater. Sci. Technol., 2022, 103: 157
7 Pan F, Cai L, Shi Y Y, et al. Phase engineering reinforced multiple loss network in apple tree-like liquid metal/Ni-Ni3P/N-doped carbon fiber composites for high-performance microwave absorption [J]. Chem. Eng. J., 2022, 435: 1355009
8 Shi G M, Lv S H, Cheng X B, et al. Enhanced microwave absorption properties of modified Ni@C nanocapsules with accreted N doped C shell on surface [J]. J. Mater. Sci.: Mater. Electron., 2018, 29(20): 17483
9 Tang J Y, Er C C, Kong X Y, et al. Two-dimensional interface engineering of g-C3N4/g-C3N4 nanohybrid: synergy between isotype and p-n heterojunctions for highly efficient photocatalytic CO2 reduction [J]. Chem. Eng. J., 2023, 466: 143287
10 Khan M A, Rameel M I, Salam F, et al. Construction of isotype heterojunctions in polymeric carbon nitride with thermal modulation and improved photocatalytic hydrogen production activity [J]. Mater. Chem. Phys., 2024, 315: 129052
11 Wang H M, Hao Y L, Xiang L L, et al. Interface and magnetic-dielectric synergy strategy to develop Fe3O4-Fe2CO3/multi-walled carbon nanotubes/reduced graphene oxide mixed-dimensional multicomponent nanocomposites for microwave absorption [J]. Mater. Res. Bull., 2024, 171: 112631
12 Zhang X, Xiang Z, Yao K, et al. Hydrangea-like N-doped Carbon/MoO2@SnS2 microspheres with Schottky contact: a multi-interface heterostructure for high-performance microwave absorption [J]. Composites, 2023, 263B: 110858
13 Zhang J F, Li G R, Zhang Y G, et al. Vertically rooting multifunctional tentacles on carbon scaffold as efficient polysulfide barrier toward superior lithium-sulfur batteries [J]. Nano Energy, 2019, 64: 103905
14 Zeng X J, Zhang H Q, Yu R H. Trace tiny NiCo alloy nanoparticles encapsulated on hierarchical porous peanut-like carbon walls for robust oxygen evolution reaction [J]. J. Alloys Compd., 2023, 960: 170950
15 Tao J H. Study on adsorption of imidazolium ionic liquids by mesopsrous carbon [D]. Harbin: Harbin Normal University, 2015
陶金慧. 介孔碳的制备及对咪唑基离子液体的吸附研究 [D]. 哈尔滨: 哈尔滨师范大学, 2015
16 Gou G J, Hua W L, Liu K Y, et al. Bimetallic MOF@wood-derived hierarchical porous carbon composites for efficient microwave absorption [J]. Diam. Relat. Mater., 2024, 141: 110688
17 Zhang H X, Sun K G, Sun K K, et al. Core-shell Ni3Sn2@C particles anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2023, 158: 242
18 Xu L L, Tao J Q, Zhang X F, et al. Co@N-doped double-shell hollow carbon via self-templating-polymerization strategy for microwave absorption [J]. Carbon, 2022, 188: 34
19 Shao X L, Wang T H, Gan Z Y, et al. Tailoring of N-doped graphite coated cobalt nanoparticles via arc discharge enables the high microwave absorption [J]. Carbon, 2021, 177: 171
20 Li B, Xu J, Xu H Y, et al. Grafting thin N-doped carbon nanotubes on hollow N-doped carbon nanoplates encapsulated with ultrasmall cobalt particles for microwave absorption [J]. Chem. Eng. J., 2022, 435: 134846
21 Lv S H, Cheng Y Z, Chen F, et al. Multiple interfacial Fe3C/MnO/NC composites towards high-performance microwave absorption [J]. J. Alloys Compd., 2023, 965: 171338
22 Li S T, Shi G M, Li Q, et al. One-step synthesis and performances of Ni@CN nanocapsules with superior dual-function as electrocatalyst and microwave absorbent [J]. Colloids Surf., 2021, 615A: 126162
23 Dong S X, Li J, Zhang S, et al. Excellent microwave absorption of lightweight PAN-based carbon nanofibers prepared by electrospinning [J]. Colloids Surf., 2022, 651A: 129670
24 Ma L, Wu Y Y, Wu Z W, et al. Enhanced dielectric loss in N-doped three-dimensional porous carbon for microwave absorption [J]. Mater. Today Adv., 2023, 20: 100434
25 Lalan V, Ganesanpotti S. The smallest anions entrapped mayenite electride@graphitic carbon core-shells reinforced with superparamagnetic Fe3O4 delivers unrivalled high-frequency microwave absorption [J]. Chem. Eng. J., 2023, 461: 141857
26 Ding H, Sun Z H, Tian S Y, et al. Tailoring Ni3ZnC0.7/graphite heterostructure in N-rich laminated porous carbon nanosheets for highly efficient microwave absorption [J]. Ceram. Int., 2023, 49: 31763
27 Zhang F, Chen Y F, Ren Y J, et al. Anionic MOF derived Bimetallic Ni x Co y @Nano-porous carbon composites toward strong and efficient electromagnetic wave absorption [J]. J. Materiomics, 2022, 8: 852
28 Wang B L, Liao H Y, Xie X B, et al. Bead-like cobalt nanoparticles coated with dielectric SiO2 and carbon shells for high-performance microwave absorber [J]. J. Colloid Interf. Sci., 2020, 578: 346
29 Li N, Cao M H, Hu C W. A simple approach to spherical nickel-carbon monoliths as light-weight microwave absorbers [J]. J. Mater. Chem., 2012, 22: 18426
30 Yan J, Huang Y, Chen C, et al. The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers [J]. Carbon, 2019, 152: 545
31 Yang Z H, Lv H L, Wu R B. Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation [J]. Nano Res., 2016, 9: 3671
32 Zhang H, Zhao Y P, Zuo X Q, et al. Construction of chiral-magnetic-dielectric trinity composites for efficient microwave absorption with low filling ratio and thin thickness [J]. Chem. Eng. J., 2023, 467: 143414
33 Jiang B, Yang W, Bai H X, et al. Multiscale structure and interface engineering of Fe/Fe3C in situ encapsulated in nitrogen-doped carbon for stable and efficient multi-band electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2023, 158: 9
34 Sun M X, Xiong Z M, Zhang Z W, et al. One-dimensional Ag@NC-Co@NC composites with multiphase core-shell hetero-interfaces for boosting microwave absorption [J]. Compos. Sci. Technol., 2022, 228: 109663
35 Tang C H, Ma W J, He P, et al. Encapsulated Prussian blue analogs derived nanocubes with tunable yolk-shell structure enabling highly efficient microwave absorption [J]. Carbon, 2023, 215: 118462
[1] HUANG Wenzhan, CHEN Yao, CHEN Peng, ZHANG Yujie, CHEN Xingyu. Stability of Pore Structure of ZL102 Al-alloy Foam Prepared by Secondary Foaming Method[J]. 材料研究学报, 2024, 38(8): 605-613.
[2] HAO Ziheng, ZHENG Liumenghan, ZHANG Ni, JIANG Entong, WANG Guozheng, YANG Jikai. Color-changing Performance of Electrochromic Devices Based on WO3/Pt-NiO Electrodes[J]. 材料研究学报, 2024, 38(8): 569-575.
[3] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[4] MA Yuan, WANG Han, NI Zhongqiang, ZHANG Jiangang, ZHANG Ruonan, SUN Xinyang, LI Chusen, LIU Chang, ZENG You. Synergistic Effect of Carbon Nanotubes with Zinc Oxide Nanowires for Enhanced Electromagnetic Shielding Performance of Hybrid Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2024, 38(1): 61-70.
[5] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[6] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[9] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] DONG Zhexuan, CHEN Ping, LIU Xingda. Effect of Plasma Treatment on Interfacial Properties of CF/PI Composites at Elevated Temperatures[J]. 材料研究学报, 2023, 37(12): 900-906.
[11] XU Wenyu, SUN Jiawen, ZHU Yaofeng. Preparation and Performance of Self-assembled Carbon/Epoxy Composite Microwave Absorbing Coating[J]. 材料研究学报, 2023, 37(12): 952-960.
[12] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[13] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[14] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[15] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
No Suggested Reading articles found!