Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (4): 297-307    DOI: 10.11901/1005.3093.2023.192
ARTICLES Current Issue | Archive | Adv Search |
Effect of Carbon Content on Tribological Properties of CrN:a-C Multiphase Composite Coatings
MA Fei1,3, WANG Chuang2, GUO Wuming2(), SHI Xiangdong1,3, SUN Jianying1,3, PANG Gang1,3
1.State Key Laboratory of Engine Reliability, Weifang 261061, China
2.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
3.Weichai Power Co. Ltd., Weifang 261061, China
Cite this article: 

MA Fei, WANG Chuang, GUO Wuming, SHI Xiangdong, SUN Jianying, PANG Gang. Effect of Carbon Content on Tribological Properties of CrN:a-C Multiphase Composite Coatings. Chinese Journal of Materials Research, 2024, 38(4): 297-307.

Download:  HTML  PDF(26481KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Multiphase composite coatings CrN:a-C were deposited by multi-arc ion plating technology with Cr target, gases N2 and C2H2 as source of Cr, N and C, respectively. The carbon content of the coating can be regulated by adjusting the C2H2 flow rate. The effect of carbon content on the composition, structure, mechanical properties, and tribological properties of CrN:a-C multiphase composite coatings was assessed by means of X-ray diffractometer (XRD), Raman spectroscope, field emission scanning electron microscope (FE-SEM), and multifunctional friction -wear tester. The results indicated that with the increase of carbon content, the structural characteristics of amorphous carbon of the coating were gradually obvious, while the compactness of the coating was decreased, which leads to the gradual decrease of the mechanical properties, but it still shows a higher hardness and adhesive strength to the substrate. CrN:a-C multiphase composite coatings exhibited better characteristics of low coefficient of friction and low wear rate during dry friction and friction in the presence of lubricating oil 5W-30, which are affected by carbon content and friction products. The coefficient of friction (CoF) and wear rate increase first and then decrease in conditions of dry friction and friction with lubricating oil respectively. Among others, the coating prepared by the C2H2 flow rate of 120 sccm presented CoF of 0.33 and 0.12, and wear rate of 1.3 × 10-5 mm3/(N·m) and 7.4 × 10-6 mm3/(N·m) in conditions of dry friction and friction with lubricating oil respectively, which was expected to provide effective anti-friction and anti-wear protection for friction pair.

Key words:  surface and interface of material      CrN:a-C multiphase composite coating      chromium nitride      amorphous carbon      tribological properties     
Received:  21 March 2023     
ZTFLH:  TG142.7  
Fund: State Key Laboratory of Engine Reliability(SKLER-201902)
Corresponding Authors:  GUO Wuming, Tel: 15394317731, E-mail: guowuming@nimte.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.192     OR     https://www.cjmr.org/EN/Y2024/V38/I4/297

Fig.1  XRD pattern of CrN:aC multiphase composite coating
Fig.2  Raman curve of the coating surface
Fig.3  Cross-sectional morphologies of piston rings (a) CrN:aC#40, (b) CrN:aC#80, (c) CrN:aC#120
Fig.4  Morphologies of CrN:aC multiphase composite coating on the surface of 316 (a) CrN:aC#40, (b) CrN:aC#80, (c) CrN:aC#120
Fig.5  Scratch test curves and scratch SEM morpographies of CrN: a-C multiphase composite coating on the surface of 316 (a) CrN:aC#40, (b) CrN:aC#80, (c) CrN:aC#120
Fig.6  Hardness curve (a) of CrN:aC multiphase composite coating on 316 surface and optical micrograph of indentation (b) CrN:aC#40, (c) CrN:aC#80, (d) CrN:aC#120
Fig.7  Friction curves (a), average coefficient of friction and wear rate (b) in atmospheric environment
Fig.8  3D profile of wear scars (1) and cross-sectional curves of wear scars (2) in the atmospheric environment (a) CrN:aC#40, (b) CrN:aC#80, (c) CrN:aC#120
Fig.9  SEM morphologies of wear scars in the atmospheric environment (a) CrN:aC#40, (b) CrN:aC#80, (c) CrN:aC#120
Fig.10  Raman curves at the wear scar of the coating
Fig.11  Friction curves (a), average coefficient of friction and wear rate (b) in oil environment
Fig.12  3D profile of wear scars (1) and cross-sectional curves of wear scars (2) in oil environment (a) CrN:aC#40, (b) CrN:aC#80, (c) CrN:aC#120
Fig.13  SEM morphologies of wear scars in oil environment (a) CrN:aC#40, (b) CrN:aC#80, (c) CrN:aC#120
Fig.14  Diagram of friction and wear mechanism (a: dry friction, b: oil environment)
1 Wang K L, Zhou H, Zhang K F, et al. Research progress on microstructure and tribological properties of doped diamond-like carbon films [J]. Surf. Tech., 2021, 50(2): 148
汪科良, 周 晖, 张凯锋 等. 掺杂类金刚石薄膜微观结构和摩擦学性能的研究进展[J]. 表面技术, 2021, 50(2): 148
2 Kong Y S, Yu J, Park Y W. Creep life prediction of alloy 718 for automotive engine materials [J]. Int. J. Auto. Tech., 2018, 19(6): 1055
3 Miao J Z, Guo Z W, Yuan C Q. Research progress on micro-texture of cylinder liner-piston ring in internal combustion engine [J]. Lubr. Eng., 2017, 42(2): 124
苗嘉智, 郭智威, 袁成清. 内燃机缸套-活塞环微织构设计与研究进展 [J]. 润滑与密封, 2017, 42(2): 124
doi: 10.3969/j.issn.0254-0150.2017.02.025
4 Shen C, Khonsari M M. The effect of laser machined pockets on the lubrication of piston ring prototypes [J]. Tribol. Int., 2016, 101: 273
5 Li D, Kong N, Zhang B, et al. Comparative study on the effects of oil viscosity on typical coatings for automotive engine components under simulated lubrication conditions [J]. Diam. Relat. Mater., 2021, 112: 108226
6 Xie W A, Qu L, Wang Z, et al. Effect of surface treatment on friction and wear property of piston ring [J]. Vehicle Engine, 2021(6): 66
谢纬安, 瞿 磊, 王 忠 等. 表面处理对活塞环摩擦磨损性能影响的试验研究 [J]. 车用发动机, 2021(6): 66
7 Zhang X C, Rao X, Lv Y G, et al. Effect of double glow plasma copper Infiltration on the tribological properties of cylinder liner and piston ring [J]. Lubr. Eng., 2022, 47(12): 37
张学成, 饶 响, 吕永刚 等. 双辉光离子渗铜对缸套-活塞环摩擦学性能的影响研究 [J]. 润滑与密封, 2022, 47(12): 37
doi: 10.3969/j.issn.0254-0150.2022.12.005
8 Li B, Chen Y, Cai J, et al. On friction and wear properties of chromium plated piston rings [J]. J. Mil. Transport., 2020, 22(9): 85
李 斌, 陈 勇, 蔡 军 等. 镀铬活塞环摩擦磨损性能研究 [J]. 军事交通学院学报, 2020, 22(9): 85
9 Xue M Q, Huang Z D, Ni G H, et al. Progress in research of surface treatments for piston ring and their tribological performance [J]. Electroplat. Finish., 2020, 39(21): 1510
薛茂权, 黄之德, 倪贵华 等. 活塞环表面处理及摩擦学性能研究进展 [J]. 电镀与涂饰, 2020, 39(21): 1510
10 Lin J, Wei R, Bitsis D C, et al. Development and evaluation of low friction tisicn nanocomposite coatings for piston ring applications [J]. Surf. Coat. Tech., 2016, 298: 121
11 Friedrich C, Berg G, Broszeit E, et al. PVD Cr x N coatings for tribological application on piston rings [J]. Surf. Coat. Tech., 1997, 97(1-3): 661
12 Mao J Y. Research status and development trend of piston ring surface treatment technology [J]. Intern. Combustion Engine Parts, 2018(19): 50
茆骏亚. 活塞环表面处理技术的研究现状及发展趋势 [J]. 内燃机与配件, 2018(19): 50
13 Xu Y, Zheng Q, Geng J, et al. Synergistic effects of electroless piston ring coatings and nano-additives in oil on the friction and wear of a piston ring/cylinder liner pair [J]. Wear, 2019, 422
14 Ren Y. Study on friction and wear properties of CrN and AlCrN PVD-coatings under rotationl wear condition [D]. Chengdu: Southwest Jiaotong University, 2011
任 元. 物理气相沉积CrN和AlCrN涂层转动微动摩擦磨损性能研究 [D]. 成都: 西南交通大学, 2011
15 Wan Y L. Study on process methods of preparing TiAlN and DLC coatings by multi-arc ion plating and its effect on tribological properties of line gear pairs [D]. Guangzhou: South China University of Technology, 2019
万玉林. 多弧离子镀制备TiAlN和DLC涂层的工艺方法及其对线齿轮副摩擦学性能的影响 [D]. 广州: 华南理工大学, 2019
16 Gassner G, Mayrhofer P H, Mitterer C, et al. Structure–property relations in Cr-C/a-C:H coatings deposited by reactive magnetron sputtering [J]. Surf. Coat. Tech., 2005, 200(1-4): 1147
17 Li H W. Comparison of friction and wear properties of several metal carbide and nitride coatings [D]. Dalian: Dalian Maritime University, 2015
李洪伟. 几种金属C、N化合物镀层摩擦磨损性能的比较 [D]. 大连: 大连海事大学, 2015
18 Guo J J, Jiang Y L, Yang W M, et al. Research on frictional behavior of DLC thin film coated piston rings and gray cast iron cylinder liners of different materials [J]. Intern. Combustion Engine Parts, 2019(5): 14
郭进京, 姜玉领, 杨为民 等. DLC薄膜涂层活塞环与不同材质灰铸铁气缸套摩擦性能的研究 [J]. 内燃机与配件, 2019(5): 14
19 Wang X, Cheng W S. Application of Diamond-like Coating on Piston Ring [J]. Automobile and New Powertrain, 2019, 2(3): 60
王 星, 程伟胜. 类金刚石涂层在活塞环上的应用 [J]. 汽车与新动力, 2019, 2(3): 60
20 Wan S, Pu J, Li D, et al. Tribological performance of crn and crn/glc coated components for automotive engine applications [J]. J. Alloys Compd., 2017, 695: 433
21 Kennedy M, Hoppe S, Esser J. Lower friction losses with new piston ring coating [J]. Auto Tech. Review, 2014(3): 30
22 Hoppe S, Kantola T, Cheng Y F, et al. DuroGlide®——next-generation piston ring coatings for fuel-efficient commercial vehicle engines [J]. Automobile & New Powertrain, 2015, 47(05): 64
Hoppe S, Kantola T, 程玉发 等. DuroGlide®——用于高燃油效率商用车发动机的新一代活塞环涂层 [J]. 汽车与新动力, 2015, 47(05): 64
23 Shen Y, Xu J J, Jin M, et al. Scuffing behavior of CKS piston ring with alloy cast iron cylinder liner [J]. Lub. Eng., 2014, 39(4): 40
沈 岩, 徐久军, 金 梅 等. CKS活塞环与合金铸铁缸套的抗拉缸性能分析 [J]. 润滑与密封, 2014, 39(4): 40
24 Liu J M, Li T H, Yang Y Z. Chromium-based composite diamond chrome CDC application on piston rings in diesel [J]. Inter. Combustion Engine Parts, 2011(11): 24
刘家满, 厉庭华, 杨远宗. 铬基复合金刚石镀铬CDC活塞环在柴油机上的应用 [J]. 内燃机与配件, 2011(11): 24
25 Cao Z, Jiang B L, Lu Y Y, et al. Influence of magnetic field unbalance coefficient on properties of CrN x coatings [J]. Chin. J. Mater. Res., 20111, 25(3): 313
曹 政, 蒋百灵, 鲁媛媛 等. 磁场非平衡度对CrNx镀层性能的影响 [J]. 材料研究学报, 2011, 25(3): 313
26 Yuan Y L, Li Z G. Friction and wear performance of carbide (Cr, Fe)7C3-reinforced Fe-based composite coating [J]. Chin. J. Mater. Res., 2013, 27(6): 622
袁有录, 李铸国. 柱状碳化物(Cr, Fe)7C3增强Fe基涂层的摩擦磨损性能 [J]. 材料研究学报, 2013, 27(6): 622
27 Demas N G, Erck R A, Ajayi O O, et al. Tribological studies of coated pistons sliding against cylinder liners under laboratory test conditions: tribological studies of coated pistons sliding against cylinder liners [J]. Lubr. Sci., 2012, 24(5): 216
28 Ye Y W, Chen H, Wang Y X, et al. Microstructure and properties of CrCN coating on 316L stainless steel [J]. Nonferr. Met. Sci. Eng., 2014, 5(4): 49
叶育伟, 陈 颢, 王永欣 等. 316L不锈钢表面沉积CrCN薄膜的结构及性能研究 [J]. 有色金属科学与工程, 2014, 5(4): 49
29 Krella A K, Czyżniewski A, Gilewicz A, et al. Cavitation erosion of crn/crcn multilayer coating [J]. Wear, 2017, 386-387: 80
30 Xu X, Sun J, Xu Z, et al. Microstructure, electrochemical and tribocorrosion behaviors of crcn nanocomposite coating with various carbon content [J]. Surf. Coat. Tech., 2021, 411: 126997
31 Liu N, Gao J, Xu L, et al. Effect of carbon target current on ultralow frictional behavior of crcn coatings under glycerol lubrication [J]. Coatings, 2021, 11(10): 1155
32 Fuentes G G, DeCerio M J D, García J A, et al. Gradient crcn cathodic arc pvd coatings [J]. Surf. Coat. Tech., 2008, 203(5-7): 670
33 Zhang T, Mu C, Zhao G, et al. Preparation of crcn super-hard coating [J]. J. Mater. Eng. Perform., 2020, 29(12): 7872
34 Lukaszkowicz K, Sondor J, Paradecka A, et al. Structure and tribological properties of AlCrN + CrCN coating [J]. Coatings, 2020, 10(11): 1084
35 Gilewicz A, Warcholinski B. Tribological properties of crcn/crn multilayer coatings [J]. Tribol. Int., 2014, 80: 34
36 Yang W J, Zhao Y H, Shen M L, et al. Corrosion resistance of 316 stainless steel after low-temperature low-pressure arc plasma nitriding [J]. Chin. J. Mater. Res., 2017, 31(2): 81
doi: 10.11901/1005.3093.2016.291
杨文进, 赵彦辉, 沈明礼 等. 低温低压电弧等离子体渗氮处理316 不锈钢的耐腐蚀性能 [J]. 材料研究学报, 2017, 31(2): 81
doi: 10.11901/1005.3093.2016.291
37 Liu E, Yu B, Xue Y, et al. Microstructure and mechanical properties of a CrCN/CrN multilayer film [J]. Mater. Res. Express, 2020, 7(9): 096406
38 Zhang H F, Zhang D, Li X W, et al. Electric conductivity and corrosion resistance of amorphous carbon films prepared by direct current magnetron sputtering on 304 stainless steel [J]. Chin. J. Mater. Res., 2015, 29(10): 751
doi: 10.11901/1005.3093.2015.023
张海峰, 张 栋, 李晓伟 等. 直流磁控溅射非晶碳膜的导电性和耐蚀性 [J]. 材料研究学报, 2015, 29(10): 751
doi: 10.11901/1005.3093.2015.023
39 Hu J, Wang L, Zhang P, et al. Construction of solid-state z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production [J]. J. Power Sources, 2016, 328: 28
40 Wang D Y, Weng K W, Hwang S Y. Study on metal-doped diamond-like carbon films synthesized by cathodic arc evaporation [J]. Diam. Relat. Mater., 2000, 9(9-10): 1762
41 Wang Y, Zhang J, Zhou S, et al. Improvement in the tribocorrosion performance of crcn coating by multilayered design for marine protective application [J]. Appl. Surf. Sci., 2020, 528: 147061
42 Zhu L J, Zhu S L, Wang F H. Effects of bias voltage and nitrogen flow rate on the structure and properties of Ni + CrAlYSiN nanocrystalline composite coatings [J]. Chin. J. Mater. Res., 2013, 27(1): 53
朱丽娟, 朱圣龙, 王福会. 偏压和氮气流量对Ni+CrAlYSiN纳米复合涂层性能的影响 [J]. 材料研究学报, 2013, 27(1): 53
[1] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[2] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[3] CHENG Hongjie, LIU Huangjuan, JIANG Ting, WANG Fajun, LI Wen. Preparation and Properties of Near-infrared Reflective Superhydrophobic Yellow Coating[J]. 材料研究学报, 2022, 36(9): 687-698.
[4] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[5] WANG Lirong, GUAN Hongyu, CHEN Shanshan, ZHANG Bingchun, YANG Ke. Preparation and Antibacterial Function of an Cu-bearing Chitosan Coating on Silicone Rubber Surface[J]. 材料研究学报, 2020, 34(8): 575-583.
[6] YU Zexin, SANG Lixia. Preparation and Formation Mechanism of a Novel TiO2 Nano Bowl Array with Large Hole Diameter[J]. 材料研究学报, 2020, 34(7): 489-494.
[7] Panpan LIU, Hanchao LI, Lin YANG, Ting GUO, Peiling KE, Aiying WANG. Influence of Annealing Temperature on the Metal-catalyzed Crystallization of Tetrahedral Amorphous Carbon to Graphene[J]. 材料研究学报, 2018, 32(5): 341-347.
[8] Muye NIU, Xinghua ZHANG, Haicheng ZHAO, Yu XIA, Jiajie LIU. Effect of Cr Addition on Tribological Properties of Ni3Si Alloys[J]. 材料研究学报, 2018, 32(5): 395-400.
[9] Li WANG, Peng GUO, Xiao ZUO, Dong ZHANG, Meidong HUANG, Peiling KE, Aiying WANG. Influence of Substrate Bias on Microstructure, Optical- and Electrical- Properties of Amorphous- Carbon Films Prepared by High Power Pulse Magnetron Sputtering[J]. 材料研究学报, 2018, 32(4): 283-289.
[10] Luhai ZHOU, Xicheng WEI, Chunyan WANG, Jun LU, Wurong WANG. Relationship Between Dry Sliding Tribological Behavior and Grain Sizes for T10 Steel[J]. 材料研究学报, 2017, 31(11): 833-838.
[11] Haifeng ZHANG,Dong ZHANG,Xiaowei LI,Congda LU,Peiling KE,Aiying WANG. Electric Conductivity and Corrosion Resistance of Amorphous Carbon Films Prepared by Direct Current Magnetron Sputtering on 304 Stainless Steel[J]. 材料研究学报, 2015, 29(10): 751-756.
[12] Guiqin YU,Jianjun LIU,Yongmin LIANG. Synthesis and Tribological Performance of Guanidinium Ionic Liquids as Lubricants for Steel /Steel Contacts[J]. 材料研究学报, 2014, 28(6): 448-454.
[13] Fazhan LI,Meijie YU,Yong XU,Chengguo WANG,Rui GAO,Qiong MAO,Xiaochen CUI. Preparation and Microwave Absorbing Performance of Carbon-based Iron Nitride Nanocomposites[J]. 材料研究学报, 2014, 28(11): 842-848.
[14] WEI Yongqiang TIAN Xiubo GONG Chunzhi YANG Shiqin. Effect of Pulsed Bias Voltage on the Microstructures and properties of TiN/TiAlN Multilayer Coatings[J]. 材料研究学报, 2011, 25(6): 630-636.
[15] WANG Changchuan WANG Richu PENG Chaoqun FENG Yan WEI Xiaofeng. Effects of hBN Surface Plated Nickel on Properties of Ni-20Cr/hBN Self-lubricating Composites[J]. 材料研究学报, 2011, 25(5): 509-516.
No Suggested Reading articles found!