Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (5): 341-347    DOI: 10.11901/1005.3093.2017.107
ARTICLES Current Issue | Archive | Adv Search |
Influence of Annealing Temperature on the Metal-catalyzed Crystallization of Tetrahedral Amorphous Carbon to Graphene
Panpan LIU1,2, Hanchao LI2, Lin YANG1, Ting GUO2, Peiling KE2, Aiying WANG2()
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Download:  HTML  PDF(3023KB) 
Export:  BibTeX | EndNote (RIS)      

In order to investigate the transformation behavior of tetrahedral amorphous carbon (ta-C) into graphene, a three-layered structure material of metal catalyst Ni/ tetrahedral amorphous carbon (ta-C)/Si-substrate was prepared via a two-step process, namely ta-C film was firstly deposited on Si-substrate with a home-made filtered cathodic vacuum arc system, then on which (111) preferential oriented Ni-film was further deposited by electron beam evaporation method. Afterwards the as prepared three-layered structure material was treated via a controlled rapid thermal annealing method in order to transform (ta-C) into graphene. Meanwhile,the effect of annealing temperature on the graphene growth was focused. Results show that both the deposited films of ta-C and Ni all present smooth and uniform surface morphology, which provide the premise for growing high-quality graphene. Furthermore, the annealing temperature plays great role on the crystallization of amorphous carbon into graphene. When the annealing temperature was above 400°C, the multilayered graphene could form on Ni surface, and the better quality of graphene was obtained through annealing at 500°C for 15 min.

Key words:  inorganic non-metallic materials      multilayer graphene      rapid thermal annealing      Ni catalyze      tetrahedral amorphous carbon     
Received:  24 January 2017     
Fund: Supported by Program of National Natural Science Foundation of China (No. 51522106), National Natural Science Foundation of China (No. 51371187), State Key Project of Fundamental Research of China (No. 2013CB632302), Public Projects of Zhejiang Province (No. 2016C31121)

Cite this article: 

Panpan LIU, Hanchao LI, Lin YANG, Ting GUO, Peiling KE, Aiying WANG. Influence of Annealing Temperature on the Metal-catalyzed Crystallization of Tetrahedral Amorphous Carbon to Graphene. Chinese Journal of Materials Research, 2018, 32(5): 341-347.

URL:     OR

Fig.1  Schematic of graphene growth process in amorphous carbon system
Fig.2  Deconvolved spectra of XPS C 1s core lever peaks of deposited ta-C film
Fig.3  Raman spectra of deposited ta-C film
Fig.4  AFM surface morphologies of deposited ta-C film (a) and ta-C/Ni film (b)
Fig.5  SEM surface images of samples annealed at 200℃ (a), 300℃ (b), 400℃ (c), 500℃ (d), 600℃ (e) and 900℃ (f)
Fig.6  XRD spectra of samples annealed at 200~600℃, compared with deposited sample in room temperature
Fig.7  Raman spectra (a) of samples annealed at 200~600℃, and ID/IG, IG/I2D (b) of samples annealed at 400~600℃
Fig.8  Cross-sectional HRTEM image annealed at 500℃ for 15 min (inset shows the interlayer spacing of graphene film)
[1] Novoselov K S, Jiang D, Schedin F, et al.Two dimensional atomic crystals[J]. Proc. Natl. Acad. Sci. USA., 2005, 102(30): 10451
[2] Geim A K, Novoselov K S.The rise of graphene[J]. Nature Mater., 2007, 6:183
[3] Novoselov K S, Jiang D, Schedin T J, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666
[4] Bolotin K I, Sikes K J, Jiang Z, et al.Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun., 2008, 146(9): 351
[5] Zhang Y B, Tan Y W, Stormer H L, et al.Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438: 201
[6] Sasaki K, Jiang J, Saito R, et al.Theory of superconductivity of carbon nanotubes and graphene[J]. J. Phys. Soc. Jpn., 2007, 76(3): 033702
[7] Balandin A A, Ghosh S, Bao W Z, et al.Superior thermal conductivity of single-layer graphene[J]. Nano Lett., 2008, 8(3): 902
[8] Lee C, Wei X D, Kysar J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321: 385
[9] Nair R R, Blake P, Grigorenko A N, et al.Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320: 1308
[10] Lin H L, Shen Y J, Wang Z J, et al.Preparation and Performance of Polypropylene Nanocomposites Toughened-Reinforced Synergetically with Functionalized Graphene and Elastomer[J]. Chin. J. Mater. Res., 2016, 30(5): 393(蔺海兰, 申亚军, 王正君等. 功能化石墨烯/弹性体协同强韧化聚丙烯纳米复合材料的制备和性能研究[J]. 材料研究学报, 2016, 30(5): 393)
[11] Heer W A D, Berger C, Wu X S, et al. Epitaxial graphene[J]. Solid State Commun., 2007, 143: 92
[12] Gao W, Alemany L B, Ci L J, et al.New insights into the structure and reduction of graphite oxide[J]. Nature Chem., 2009, 1(8): 403
[13] Wintterlin J, Bocquet M L.Graphene on metal surfaces[J]. Surf. Sci., 2009, 603(10): 1841
[14] Ren W C, Gao L B, Ma L P, et al.Preparation of graphene by chemical vapor deposition[J]. New Carbon Mater., 2011, 26(1): 71(任文才, 高力波, 马来鹏等. 石墨烯的化学气相沉积法制备[J]. 新型碳材料, 2011, 26(1): 71)
[15] Zhang W, Zhang S, Liu L Q, et al.Tribological properties and application of a-C diamond-like carbon films[J]. Journal of Academy of Armored Force Engineering, 2006, 20(4): 83(张伟, 张纾, 柳清亮等. 非晶碳类金刚石薄膜摩擦学特性及其应用[J]. 装甲兵工程学院学报, 2006, 20(4): 83)
[16] Dai W, Wu G S, Sun L L, et al.Effect of substrate bias on microstructure and properties of diamond-like carbon films by linear ion beam system[J]. Chin. J. Mater. Res., 2009, 23(6): 598(代伟, 吴国松, 孙丽丽等. 衬底负偏压对线性离子束DLC膜微结构和物性的影响[J]. 材料研究学报, 2009, 23(6): 598)
[17] Roy R K, Lee K R.Biomedical applications of diamond-like carbon coatings: a review[J]. J. Biomed. Mater. Res. B., 2007, 83: 72
[18] Dwivedi N, Kumar S, Malik H K, et al.Correlation of sp3 and sp2 fraction of carbon with electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon films[J]. Appl. Surf. Sci., 2011, 257: 6804
[19] Rodr?guez-Manzo J A, Pham-Huu C, Banhart F. Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon[J]. ACS Nano. 2011, 5(2): 15292
[20] Banno K, Mizuno M, Fujita K, et al.Transfer-free graphene synthesis on insulating substrates via agglomeration phenomena of catalytic nickel films[J]. Appl. Phys. Lett., 2013, 103(8): 082112
[21] Zheng M W, Takei K, Hsia B, et al.Metal-catalyzed crystallization of amorphous carbon to graphene[J]. Appl. Phys. Lett., 2010, 96(6): 063110
[22] Xu S P, Li X W, Huang M D, et al.Stress reduction dependent on incident angles of carbon ions in ultrathin tetrahedral amorphous carbon films[J]. Appl. Phys. Lett., 2014, 104(14): 141908
[23] Bourgoin D, Turgeon S, Ross G G.Characterization of hydrogenated amorphous carbon films producedby plasma-enhanced chemical vapour deposition with various chemical hybridizations[J]. Thin Solid Films, 1999, 357: 246
[24] Gradowski M V, Ferrari A C, Ohr R, et al.Resonant Raman characterisation of ultra-thin nano-protective carbon layers for magnetic storage devices[J]. Surf. Coat. Technol., 2003, 174: 246
[25] Ferrari A C, Robertson J.Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys. Rev. B, 2000, 61(20): 14095
[26] Ferrari A C, Robertson J.Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon[J]. Phys. Rev. B, 2001, 64(7): 075414
[27] Song X L, Song L X, Zhang T.Effect of nickel film on growth of graphene by chemical vapor method[J]. J. Chin. Ceram. Soc., 2015, 43(12): 1795(宋香莲, 宋力昕, 张涛. 镍薄膜对化学气相沉积法生长石墨烯的影响[J]. 硅酸盐学报, 2015, 43(12): 1795)
[28] Tuinstra F, Koenig J L.Raman spectrum of graphite[J]. J. Chem. Phys., 1970, 53(3): 1126
[29] Ferrari A C, Meyer J C, Scardaci V, et al.Raman Spectrum of Graphene and Graphene Layers[J]. Phys. Rev. Lett., 2006, 97(18): 187401
[30] Pimenta M A, Dresselhaus G, Dresselhaus M S, et al.Studying disorder in graphite-based systems by Raman spectroscopy[J]. Phys. Chem. Chem. Phys., 2007, 9: 1276
[31] Can?ado L G, Takai K, Enoki T.General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy[J]. Appl. Phys. Lett., 2006, 88(16): 163106
[32] Li X S, Cai W W, An J H, et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324: 1312
[33] Wenisch R, Hübner R, Munnik F, et al.Nickel-enhanced graphitic ordering of carbon ad-atoms during physical vapor deposition[J]. Carbon, 2016, 100: 656
[34] Giovannetti G, Khomyakov P A, Brocks G, et al.Doping graphene with metal contacts[J]. Phys. Rev. Lett., 2008, 101(2): 026803
[35] Saadi S, Abild-Pedersen F, Helveg S, et al.On the role of metal step-edges in graphene growth[J]. J. Phys. Chem. C, 2010, 114(25): 11221
[1] WANG Hao, ZHAO Hongfeng, KANG Jiashuang, ZHOU Yuanxiang, XIE Qingyun. Properties of ZnO Varistor Ceramics Co-doped with B2O3 and Al2O3[J]. 材料研究学报, 2021, 35(2): 110-114.
[2] ZHANG Chen, HAN Weihao, GONG Yumei, YU Yang, CAO Jincheng. Synthesis of Hollow Mesoporous SiO2 and Its Adsorption Performance of Cr[J]. 材料研究学报, 2021, 35(1): 45-52.
[3] ZHANG Ming, WANG Zhiyong, LUO Qin, DAI Zhengkun, LI Yesheng, WU Ziping. Highly Activated Carbon Nanotube Sponges Deposited with Sulfur for Lithium-sulfur Batteries[J]. 材料研究学报, 2021, 35(1): 65-71.
[4] WU Mengjiao, REN Zhaohui, TIAN He, HAN Gaorong. Ferroelectric Polarization Induced Oriented Attachment Growth of PbTiO3 Films and Grain Size Control[J]. 材料研究学报, 2020, 34(9): 650-658.
[5] ZUO Cheng, DU Yunhui, ZHANG Peng, WANG Yujie, Cao Haitao. Electrochemical Performance of Li1.2Mn0.54Ni0.13Co0.13O2 Lithium-enriched Cathode Materials Coated with Al2O3[J]. 材料研究学报, 2020, 34(8): 621-627.
[6] SHI Yuanji, CHEN Xianbing, WU Xiujuan, WANG Hongjun, GUO Xunzhong, LI Junwan. Deformation Mechanism of Nanoscale Polycrystalline α-Silicon Carbide Based on Molecular Dynamics Simulation[J]. 材料研究学报, 2020, 34(8): 628-634.
[7] XU Shipeng, WANG Hua, CHEN Weiqian, LI Yuhong, LI Yujun, WANG Aiying. Structure and Properties of Ultrathin Tetrahedral Amorphous Carbon Films[J]. 材料研究学报, 2020, 34(5): 379-384.
[8] SONG Xue, LI Yafan, REN Jie, ZHONG Yaoyu, ZHANG Hongxia, OUYANG Shunli. Effect of Bayan-Obo Tailings Content on Crystallization Characteristics and Properties of Glass-ceramics[J]. 材料研究学报, 2020, 34(5): 368-378.
[9] LIN Wenwen, HE Xiaochun, XU Zhijun, WANG Ziheng, CHU Ruiqing. Influence of Bi2WO6 on Electric Properties of ZnO Varistor Ceramics[J]. 材料研究学报, 2020, 34(4): 285-290.
[10] WANG Shiqi,HUO Wenyi,XU Zhengchao,ZHANG Xuhai,ZHOU Xuefeng,FANG Feng. Fabrication of Films of Co Doped TiO2 Nanotube Array and their Photocatalytic Reduction Performance[J]. 材料研究学报, 2020, 34(3): 176-182.
[11] LI Hongxia,LI Baowei,XU Pengfei,LIU Zhongxing. Influences of Heat Treatment Soaking Time on Crystallization and Properties of Tailings-based Glass-Ceramics[J]. 材料研究学报, 2020, 34(3): 209-216.
[12] TANG Jin, LI Dan, QIN Jianchun, ZENG Jishu, HE Hao, LI Yimin, LIU Chen. Microstructure and Magnetic Properties of Fe2W-type Ferrites BaFe2-x2+CoxFe163+O27 (x=0.0~0.8)[J]. 材料研究学报, 2020, 34(12): 915-920.
[13] LIU Shanshan, LAN Yanhua, YANG Rongjie, ZHOU Zhiming. Simulation Calculation for Adsorption Mechanism of Tris (chloroisopropyl) Phosphate on Surface of Montmorillonite[J]. 材料研究学报, 2020, 34(11): 853-860.
[14] LI Hui, PAN Jie, CAO Kaiyuan, LIU Hui, YIN Jie, WANG Yifeng. Preparation of Nano Zinc Oxide/Sodium Alginate Composite Film by Electrodeposition[J]. 材料研究学报, 2020, 34(11): 829-834.
[15] LI Xiaoxin, XING Ru, LIU Jiao, WANG Ting, SUN Yunbin, CHEN Hongwei, ZHAO Jianjun. Magnetocaloric Effect of Tb-doped Double Perovskite Oxide Pr2CoMnO6[J]. 材料研究学报, 2020, 34(1): 73-80.
No Suggested Reading articles found!