Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (4): 288-296    DOI: 10.11901/1005.3093.2023.309
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor
LI Jing1, XU Yingchao1,2(), FAN Haoshuang1, LU Yi1, LI Li1, ZHANG Xianyu1
1.School of Optoelectronics and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China
2.Fujian Provincial Key Laboratory of Optoelectronic Technology and Devices, Xiamen University of Technology, Xiamen 361024, China
Cite this article: 

LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor. Chinese Journal of Materials Research, 2024, 38(4): 288-296.

Download:  HTML  PDF(7705KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The compound Ca2GdSbO6 with a stable double perovskite structure is one of the high-quality materials used as a phosphor matrix. A new series of reddish-orange phosphors Ca2Gd1 - x SbO6:xSm3+ (x = 0、0.01、0.02、0.03、0.04、0.05、0.06)were synthesized by high-temperature solid-state method. The phase composition, optical properties, crystal structure and chemical purity of the prepared phosphors were characterized via X-ray diffractometer (XRD), scanning electron microscope (SEM), photoluminescence spectroscope (PL), high-temperature fluorescence spectroscope and fluorescence decay lifetime measurement. The incorporation of Sm may endow the synthesized phosphor Ca2Gd1 - x SbO6:xSm3+ with ions Sm3+ as its luminescent centers with the peculiar 4G5/26H7/2 transition of Sm3+ at 597 nm, so that the synthesized phosphor may emit the orange-red light at 597 nm under the excitation of the light at 407 nm. As the concentration of Sm3+ ions increase, the luminous intensity of Ca2GdSbO6:Sm3+ phosphors increases first, and then decreases. According to Dexter's theory, the concentration quenching is dominated by the electric dipole-dipole interaction, and the optimum doping of Sm3+ ions is concentration x = 0.03. The test shows that the color purity of the best-doped sample is about 99.3%, and the color coordinates are (0.6146, 0.3826). The thermal stability was further studied, and it was found that the emission intensity was only attenuated by 5.56% at 453 K. The above results show that the new red-orange light-emitting Ca2GdSbO6:Sm3+ phosphor is promising to be applied in the field of white LED.

Key words:  inorganic non-metallic materials      Ca2GdSbO6:Sm3+      reddish-orange phosphor      high-tem-perature solid-state method      white LED      high thermal stability     
Received:  25 June 2023     
ZTFLH:  O482.31  
Fund: University Industry-University-Research Joint Innovation Project of Fujian Province(2023H-6038);Scientific Research Development Program of Xiamen University of Technology(XPDKT-20009);Graduate student scientific research innovation projects in Xiamen University of Technology(YKJCX2023105)
Corresponding Authors:  XU Yingchao, Tel: (0592)6291572, E-mail: ycxu@xmut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.309     OR     https://www.cjmr.org/EN/Y2024/V38/I4/288

Fig.1  XRD patterns of CGS:xSm3+ (x = 0.01~0.06) (a)and magnified XRD patterns for the 2θ in the region of 31.1°~31.5° (b)
Fig.2  Crystal structure of CGS
Fig.3  SEM images of undoped NaF CGS phosphor (a, b) andSEM images of NaF-doped CGS phosphor (c, d)
Fig.4  EDS spectrum of CGS:0.03Sm3+, (a) and Elemental mapping of the CGS:0.03Sm3+ phosphor (b)
Fig.5  Excitation spectrum and emission spectrum of CGS: 0.03Sm3+ phosphor
Fig.6  PL spectra of CGS:xSm3+ (x = 0.01~0.06) (a) and dependence of integrated fluorescence in tensities of main bands on Sm3+ contents (b)
Fig.7  Cross-relaxation channels of Sm3+
Fig.8  Correlation between fluorescence intensity lg(I/x) and doping ion concentration lg(x) of CGS:xSm3+(x = 0.01~0.06) phosphors
Fig.9  Sm3+ emission of CGS:xSm3+ (x = 0.02~0.05) phosphors excited by 407 nm and monitored at 597 nm
Fig.10  Fluorescence emission spectrum at different temperatures (a) and normalized emission inten-sity (b) of the CGS:0.03Sm3+ phosphor
Fig.11  Plot of ln(I0/IT-1) vs. 1/KT
Fig.12  Configuration coordinate of CGS:Sm3+ ion
Fig.13  CIE chromaticity coordinates of CGS:xSm3+ (x = 0.01~0.06)
Sm3+ concentration (x)CIE chromaticity coordinates (X, Y)Color purity / %Correlated color temperature / K
0.01(0.6156, 0.3823)99.51305
0.02(0.6167, 0.3826)99.91301
0.03(0.6146, 0.3826)99.31311
0.04(0.6162, 0.3829)99.91305
0.05(0.6151, 0.3824)99.41308
0.06(0.6158, 0.3832)99.91308
Table 1  CIE chromaticity coordinates, CCT, and color purity of CGS:xSm3+ (x = 0.01~0.06)
1 Huang X Y. Red phosphor converts white LEDs [J]. Nat. Photonics., 2014, 8(10): 748
2 Phillips J M, Coltrin M E, Crawford M H, et al. Research challenges to ultra-efficient inorganic solid-state lighting [J]. Laser. Photonics. Rev., 2007, 1(4): 307
3 Tian S H, Qiao Z, Sun M S. Luminescence and Energy Transfer of Tunable Emission Phosphor Ca9Al(PO4)7: Tb3+, Sm3+ for White LEDs [J]. Chin. J Lumin., 2019, 40(12): 1469
田少华, 乔 峥, 孙明生. 白光LEDs用颜色可调型荧光粉Ca9Al(PO4)7: Tb3+, Sm3+的发光及能量传递 [J]. 发光学报, 2019, 40(12): 1469
4 Jiao M M, Guo N, Lü W, et al. Synthesis, structure and photoluminescence properties of europium-, terbium-, and thulium-doped Ca3Bi(PO4)3 phosphors [J]. Dalton Trans., 2013, 42(34): 12395
5 Lai H Z, Zhu B, Wang J, et al. Preparation and luminescence properties of Eu3+ activated K2CaP2O7 phosphors [J]. Chin. J Lumin., 2018, 39(2): 121
赖海珍, 朱 斌, 王 婧 等. Eu3+激活K2CaP2O7荧光粉的制备和发光性质 [J]. 发光学报, 2018, 39(2): 121
6 Li Z H, Hua Y B, Ou G C. Synthesis red-emitting Ca2LaNbO6:xSm3+ phosphors for good color-rendering-index white-LED devices [J]. Optik., 2021, 233: 166595
7 Wu J, Zhang P, Jiang C D, et al. Preparation and Luminescence Properties of Reddish-orange Phosphors Ca3Y2Si3O12: Sm3+ [J]. Chin. J Lumin., 2014, 35(7): 772
吴 疆, 张 萍, 蒋春东 等. 橙红色荧光粉Ca3Y2Si3O12:Sm3+的制备及发光特性 [J]. 发光学报, 2014, 35(7): 772
8 Devi S, Dalal M, Dalal J, et al. Near-ultraviolet excited down-conversion Sm3+-doped Ba5Zn4Gd8O21 reddish-orange emitting nano-diametric rods for white LEDs [J]. Ceram. Int., 2019, 45(6): 7397
9 Ke Y E, Zhao B K, Ding K, et al. Orange-red-emitting Sm3+-doped double perovskite CaY0.5Ta0.5O3 phosphor with highly thermal stability for white LED applications [J]. J. Lumin., 2020, 221: 116997
10 Chang J C, Chen C T, Rudysh M, et al. La6Ba4Si6O24F2: Sm3+ novel red-emitting phosphors: Synthesis, photoluminescence and theoretical calculations [J]. J. Lumin., 2019, 206: 417
11 Wang X, Wang W G, Wang Y N, et al. Preparation of BaWO4: Sm3+ red phosphor by microwave method and its luminescent properties [J]. Contemp. Chem. Ind., 2023, 52(3): 584-587+592
王 熙, 王伟刚, 王亚楠 等. SrWO4:Sm3+荧光粉的微波合成及发光性能研究 [J]. 当代化工, 2023, 52(3): 584-587+592
12 Zhao F Y, Song Z, Zhao J, et al. Double perovskite Cs2AgInCl6: Cr3+: broadband and near-infrared luminescent materials [J]. Inorg. Chem. Front., 2019, 6(12): 3621
13 Fan H S, Meng X G, Xu Y C, et al. A novel Ca2ScNbO6:Eu3+ phosphor with excellent thermal stability for high color rendering WLED [J]. Opt. Mater., 2023, 140: 113871
14 Chen Z L, Tian Z B, Zhang J, et al. Novel deep‐red‐emitting double‐perovskite type Ca2ScNbO6:Mn 4+ phosphor: Structure, spectral study, and improvement by NaF flux [J]. J. Am. Ceram. Soc., 2022, 105(6): 4230
15 Hua Y B, Ran W G, Yu J S. Strong red emission with excellent thermal stability in double-perovskite type Ba2GdSbO6:Eu3+ phosphors for potential field-emission displays [J]. J. Alloys. Compd., 2020, 835: 155389
16 Hua Y B, Yu J S. Synthesis and luminescence properties of reddish-orange-emitting Ca2GdNbO6:Sm3+ phosphors with good thermal stability for high CRI white applications [J]. Ceram. Int., 2021, 47(5): 6059
17 Fang Z X, Yi S P, Zhou Y X, et al. Preparation and Characterization of Double Perovskite Sr2GdSbO6: Eu3+ Phosphor [J]. Journal of Guangdong University of Technology, 2023, 40(2): 88
方志雄, 易双萍, 周一轩 等. 双钙钛矿结构Sr2GdSbO6:Eu3+荧光粉的制备与表征 [J]. 广东工业大学学报, 2023, 40(2): 88
18 Li H H, Gong X H, Chen Y J, et al. Luminescence properties of phosphate phosphors Ba3Gd1-x(PO4)3:xSm3+ [J]. J. Rare. Earths., 2018, 36(5): 456
19 Stephens E M, Metcalf D H, Berry M T, et al. Near-ultraviolet absorption spectra and crystal-field analysis of Gd3+ in Na3[Gd(C4H4O5)3]⋅2NaClO4⋅6H2O [J]. Phys. Rev. B., 1991, 44(18): 9895
pmid: 9998991
20 Wu P P, Meng X G, Xu Y C, et al. Research on new orange-red emitting Sm3+-doped NaSr2Nb5O15 phosphors [J]. J. Lasers., 2022, 43(8): 37
吴盼盼, 孟宪国, 许英朝 等. Sm3+掺杂NaSr2Nb5O15的新型橙红色荧光粉 [J]. 激光杂志, 2022, 43(8): 37
21 Yin M, Wen J, Duan C K. Transition selection rules of rare-earth in optical materials [J]. Chin. J Lumin., 2011, 32(7): 643
尹 民, 闻 军, 段昌奎. 稀土离子激活发光材料中能级跃迁的选择定则 [J]. 发光学报, 2011, 32(7): 643
22 Dong G Y, Hou C C, Yang Z P, et al. Synthesis and luminescence properties of a novel red Ca0.5Sr0.5MoO4:Sm3+ phospher [J]. J. Opt. Laser., 2014, 25(1): 89
董国义, 侯春彩, 杨志平 等. 新型红色荧光粉Ca0.5Sr0.5MoO4:Sm3+的制备及光学性能 [J]. 光电子.激光, 2014, 25(1): 89
23 Yang W B, Xiong F B, Yang Y, et al. Novel orange-red-emitting Sr3Ga2Ge4O14:Sm3+ phosphors with low thermal quenching [J]. Chin. J Lumin., 2022, 43(6): 879
杨伟斌, 熊飞兵, 杨 寅 等. 低热猝灭新型Sr3Ga2Ge4O14: Sm3+橙红色荧光粉 [J]. 发光学报, 2022, 43(6): 879
24 Ćirić A, Stojadinović S, Sekulić M, et al. JOES: An application software for Judd-Ofelt analysis from Eu3+ emission spectra [J]. J. Lumin., 2019, 205: 351
25 Ha M G, Jeong J S, Han K R, et al. Characterizations and optical properties of Sm3+-doped Sr2SiO4 phosphors [J]. Ceram. Int., 2012, 38(7): 5521
26 Meng X G, Zhou Q, Xu Y C, et al. Photoluminescence properties of a new orange-red phosphor Sr4Nb2O9:Sm3+ [J]. J. Chin. Soc. Rare Earths, 2023, 41(2): 272
孟宪国, 周 琼, 许英朝 等. 新型橙红色荧光粉Sr4Nb2O9:Sm3+的光致发光性能研究 [J]. 中国稀土学报, 2023, 41(2): 272
27 Suhasini T, Suresh Kumar J, Sasikala T, et al. Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses [J]. Opt. Mater., 2009, 31(8): 1167
28 Li K, Lian H Z, Deun R V. A novel deep red-emitting phosphor KMgLaTeO6: Mn4+ with high thermal stability and quantum yield for w-LEDs: structure, site occupancy and photoluminescence properties [J]. Dalton. Trans., 2018, 47(8): 2501
29 Hua Y B, Ran W G, Yu J S. Excellent photoluminescence and cathodoluminescence properties in Eu3+-activated Sr2LaNbO6 materials for multifunctional applications [J]. Chem. Eng. J., 2021, 406: 127154
30 Du J N, Xu D H, Gao X D, et al. A novel orange-red emitting phosphor Sr3Lu(PO4)3:Sm3+ for near UV-pumped white light-emitting diodes [J]. J. Mater. Sci. Mater. Electron., 2017, 28(11): 8136
31 Pardha Saradhi P, Varadaraju U V. Photoluminescence studies on Eu2+-activated Li2SrSiO4 a potential orange-yellow phosphor for solid-state lighting [J]. Chem. Mater., 2006, 18(22): 5267
32 Tian M M, Li P L, Wang Z J, et al. Synthesis, color-tunable emission, thermal stability, luminescence and energy transfer of Sm3+ and Eu3+ single-doped M3Tb(BO3)3 (M = Sr and Ba) phosphors [J]. Cryst. Eng. Comm., 2016, 18(36): 6934
33 Wang J X, Xie Y, Guo J L, et al. Abnormal thermal quenching behavior and optical properties of a novel apatite-type NaCa3Bi(PO4)3F:Sm3+ orange-red-emitting phosphor for w-LED applications [J]. Ceram. Int., 2021, 47(20): 28167
34 Bergstrand J, Liu Q, Huang B, et al. On the decay time of upconversion luminescence [J]. Nanoscale, 2019, 11(11): 4959
doi: 10.1039/c8nr10332a pmid: 30839016
35 Wu J X, Li M, Jia H L, et al. Morphology formation mechanism and fluorescence properties of nano-phosphor YPO4:Sm3+ excited by near-ultraviolet light [J]. J. Alloys. Compd., 2020, 821: 153535
36 Cao R P, Lv X Y, Jiao Y M, et al. Ca3La6Si6O24:Eu3+ orange-red-emitting phosphor: Synthesis, structure and luminescence properties [J]. Mater. Res. Bull., 2020, 122: 110651
37 McCamy C S. Correlated color temperature as an explicit function of chromaticity coordinates [J]. Color. Res. Appl., 1992, 17(2): 142
38 Dang P P, Liu D J, Wei Y, et al. Highly efficient cyan-green emission in self-activated Rb3RV2O8(R = Y, Lu) vanadate phosphors for full-spectrum white light-emitting diodes (LEDs) [J]. Inorg. Chem., 2020, 59(9): 6026
[1] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[2] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[3] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[4] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[7] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[8] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[9] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[10] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[11] WANG Sheng, ZHOU Qiaoting, ZHAN Huimin, CHEN Jingjing. Atomic Analysis of Contact-induced Subsurface Damage Behavior of Single Crystal SiC Based on Molecular Simulation[J]. 材料研究学报, 2023, 37(12): 943-951.
[12] WANG Yue, FU Boyan, CHEN Shuanglong, ZOU Binglin, WANG Chunjie. Thermophysical Properties of Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd) Nanomaterials for Thermal Barrier Coatings[J]. 材料研究学报, 2023, 37(11): 855-861.
[13] SUN Yuwei, CHEN Chou, QI Xin, REN Chuqi, TANG Qian, TENG Honghui, REN Baixiang. Synthesis of Z-scheme Ag3PO4/MIL-125(Ti) Heterojunction and Its Performance in Photocatalytic Reduction of Cr(VI)[J]. 材料研究学报, 2023, 37(11): 871-880.
[14] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
No Suggested Reading articles found!