Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (7): 511-522    DOI: 10.11901/1005.3093.2022.315
ARTICLES Current Issue | Archive | Adv Search |
Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy
LIU Tianfu1, ZHANG Bin1(), ZHANG Junfeng2, XU Qiang3, SONG Zhuman4, ZHANG Guangping4
1.Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shengyang 110819, China
2.Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
3.China Ship Scientific Research Center, Wuxi 214082, China
4.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

LIU Tianfu, ZHANG Bin, ZHANG Junfeng, XU Qiang, SONG Zhuman, ZHANG Guangping. Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy. Chinese Journal of Materials Research, 2023, 37(7): 511-522.

Download:  HTML  PDF(15767KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The low-cycle fatigue behavior of TC4 ELI (Extra-low-interstitial) alloy plates for pressure shells in deep-sea submersible with different notch stress concentration factors under constant total strain amplitude was investigated. The results indicate that cyclic harding and cyclic softening occur in the smooth specimens under the lower strain amplitude (≤0.7%) and higher strain amplitudes (0.8% and 0.9%), respectively, at the initial stage of the cyclic loading. While the cyclic hardening occurs in all the notched specimens under the strain amplitudes of 0.2% to 0.7% at the initial stage of the cyclic loading. Based on the variation of material hysteretic energy under the cyclic loading, a relative crack initiation life prediction model was established to describe the damage degree of TC4ELI alloy specimens under the low cycle fatigue loading. The relationship between notch stress concentration factors and low cycle fatigue performance parameters was also described. This model can effectively predict the relative fatigue crack initiation life of TC4ELI alloy with low notch stress concentration factor under high strain amplitude conditions.

Key words:  metallic material      TC4 ELI alloy      low cycle fatigue      notch      Stress concentration factor      fatigue life     
Received:  07 June 2022     
ZTFLH:  TB31  
Fund: National Natural Science Foundation of China(51971060);National Natural Science Foundation of China(52171128)
Corresponding Authors:  ZHANG Bin, Tel: (024) 83691585, E-mail: zhangb@atm.neu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.315     OR     https://www.cjmr.org/EN/Y2023/V37/I7/511

AlVFeCONHTi
5.50~6.503.60~4.40≤0.25≤0.08≤0.13≤0.03≤0.0125Bal.
Table 1  Nominal composition of TC4 ELI alloy (%, mass fraction)
Fig. 1  Dimensions and surface finish of TC4 ELI specimens with different notch stress concentration factors for low-cycle fatigue tests (a) Kt =1, (b) Kt =1.97, (c) Kt =2.64, (d) Kt =3.62
Fig.2  Optical image of rolled TC4 ELI alloy
Fig.3  Stress amplitude of TC4 ELI alloy with different notched stress concentration coefficient varies with cycle number (a) Kt =1, (b) Kt =1.97, (c) Kt =2.64, (d) Kt =3.62
Fig.4  Fatigue hysteresis loops of TC4 ELI specimens with different notch stress concentration factors (a) Kt =1, (b) Kt =1.97, (c) Kt =2.64, (d) Kt =3.62
Fig.5  SEM images of fatigue fracture surfaces of TC4 ELI alloy smooth specimens under the control of different strain amplitudes (a, c, e, g) 0.4%, (b, d, f, h) 0.9%
Fig.6  SEM images of fatigue fracture surfaces of TC4 ELI alloy notched specimens with three different notch stress concentration factors under the control of strain amplitude of 0.3% (a, d, g) Kt =1.97, (b, e, h) Kt =2.64, (c, f, i) Kt =3.62
Fig.7  TEM images of fatigue fracture surfaces of TC4 ELI alloy smooth specimens under control of different strain amplitudes (a~c) 0.4%, (d~f) 0.9%
Fig.8  Fitting curves of stress amplitude and plastic strain amplitude of TC4 ELI alloy with different notch stress concentration factors (a), Variations of cyclic strength coefficient and cyclic strain hardening exponent (b) of TC4 ELI alloy with notch stress concentration factor
Ktn'K'
10.0591116.4
1.970.1272217.4
2.640.1482388.9
3.620.2165755.6
Table 2  Fatigue performance parameter of TC4 ELI alloy with different notch stress concentration factors
Fig.9  Relationships between hysteresis energy and relative cycles of TC4 ELI alloy smooth specimen under total strain amplitude of 0.9% (a), corresponding hysteretic loops of the five reference points in figure (a) (b)
Fig.10  Relation diagram between hysteresis energy and relative cycle of alloy (a) Kt =1, (b) Kt =1.97, (c) Kt =2.64, (d) Kt =3.62, (e) the relationships between relative fatigue crack initiation life and Δεt /2, (f) the relationships between relative fatigue crack initiation life and Kt
Fig.11  Relationships between relative fatigue crack initiation life and total strain amplitude of TC4 ELI alloy
1 Zhan Z X. Experiments and numerical simulations for the fatigue behavior of a novel TA2-TA15 titanium alloy fabricated by laser melting deposition [J]. International Journal of Fatigue, 2019, 121: 20
doi: 10.1016/j.ijfatigue.2018.12.001
2 He B B, Wu W H, Zhang L, et al. Microstructural characteristic and mechanical property of Ti6Al4V alloy fabricated by selective laser melting [J]. Vacuum, 2018, 150: 79
doi: 10.1016/j.vacuum.2018.01.026
3 Jiang X J, Chen G Y, Men X L, et al. Ultrafine duplex microstructure and excellent mechanical properties of TC4 alloy via a novel thermo- mechanical treatment [J]. Journal of Alloys and Compounds, 2018, 767: 617
doi: 10.1016/j.jallcom.2018.07.141
4 Bai C Y, Lan L, Xin R Y, et al. Microstructure evolution and cyclic deformation behavior of Ti-6Al-4 V alloy via electron beam melting during low cycle fatigue [J]. International Journal of Fatigue, 2022, 159: 106784
doi: 10.1016/j.ijfatigue.2022.106784
5 Zhang M D, Cao J X, Li T, et al. The effect of transformed β-phase on local area plastic deformation and dislocation characteristics of Ti6242s alloy under low-cycle fatigue and dwell fatigue [J]. Materials Science and Engineering: A, 2021, 802: 140643
doi: 10.1016/j.msea.2020.140643
6 Carrion P E, Shamsaei N, Daniewicz S R, et al. Fatigue behavior of Ti-6Al-4V ELI including mean stress effects [J]. International Journal of Fatigue, 2017, 99: 87
doi: 10.1016/j.ijfatigue.2017.02.013
7 Galarraga H, Warren R J, Lados D A, et al. Fatigue crack growth mechanisms at the microstructure scale in as-fabricated and heat treated Ti-6A1-4V ELI manufactured by electron beam melting (EBM) [J]. Engineering Fracture Mechanics, 2017, 176: 263
doi: 10.1016/j.engfracmech.2017.03.024
8 Galarraga H, Warren R J, Lados D A, et al. Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM) [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2017, 685: 417
doi: 10.1016/j.msea.2017.01.019
9 Benedetti M, Torresani E, Leoni M, et al. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71: 295
doi: S1751-6161(17)30139-X pmid: 28376363
10 Zhang J, Zuo X, Wang W, et al. Overviews of investigation on submersible pressure hulls [J]. Advances in Natural Science, 2014, 7(4): 54
11 Yuan Y, Zhang M, Li X, et al. Research on underwater pre-installed unmanned combat equipment [J]. Tactical Missile Technology, 2018, (1): 51
袁亚, 张 木, 李 翔 等. 国外水下预置无人作战装备研究 [J]. 战术导弹技术, 2018, (1): 51
12 Li W Y, Wang S, Liu T, et al. Current status and progress on pressure hull structure of manned deep submersible [J]. Shipbuilding of China, 2016, 57(1): 210
李文跃, 王 帅, 刘 涛 等. 大深度载人潜水器耐压壳结构研究现状及最新进展[J]. 中国造船, 2016, 57(1): 210
13 Zhang Y, Liu X M, Lei X Q, et al. New structural desigin of spherical pressure hull for deep-sea submersibles: a multilayer and pressure redistribution approach [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1231
doi: 10.6052/0459-1879-17-156
张 吟, 刘小明, 雷现奇 等. 基于分层分压结构的新型潜水器耐压壳结构设计 [J]. 力学学报, 2017, 49(6): 1231
14 Shen Y S, Li W Y, Jiang X Y. Parameter research of test pressure and stress criterion for the titanium-alloy manned pressure hulls[J]. The ocean engineering, 2019, 37(5): 10
沈允生, 李文跃, 姜旭胤. 钛合金载人舱球壳试验压力和应力衡准取值研究 [J]. 海洋工程, 2019, 37(5): 10
15 Yu C L, Chen Z T, Chen C, et al. Influence of initial imperfections on ultimate strength of spherical shells [J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(5): 473
doi: 10.1016/j.ijnaoe.2017.02.003
16 Gao P F, Lei Z N, Li Y K, et al. Low-cycle fatigue behavior and property of TA15 titanium alloy with tri-modal microstructure [J]. Materials Science & Engineering A, 2018, 736: 1
17 Pan X N, Xu S W, Qian G A, et al. The mechanism of internal fatigue-crack initiation and early growth in a titanium alloy with lamellar and equiaxed microstructure[J]. Materials Science and Engineering: A, 2020, 798: 140110
doi: 10.1016/j.msea.2020.140110
18 Wang Y F, Chen R, Cheng X, et al. Effects of microstructure on fatigue crack propagation behavior in a bi-modal TC11 titanium alloy fabricated via laser additive manufacturing[J]. Journal of Materials Science & Technology, 2019, 35(2): 403
19 Guo P, Zhao Y Q, Zeng W D. Fatigue crack growth behavior in TC4-DT titanium alloy with different lamellar microstructures [J]. Rare Metal Materials and Engineering, 2015, 44(2): 277
doi: 10.1016/S1875-5372(15)30019-9
20 Wan M P, Wu Y J, Xu P W. Effects of microstructure on fatigue crack propagation rate of TC4ELI alloy [J]. Hot Working Technology, 2012, 41(16): 20
万明攀, 伍玉娇, 徐平伟. TC4ELI合金显微组织对疲劳裂纹扩展速率的影响 [J]. 热加工工艺, 2012, 41(16): 20
21 Ma Y J, Li J W, Lei J f, et al. Influences of microstructure on fatigue crack propagating path and crack growth rates in TC4 ELI alloy [J]. Acta Metallurgica Sinica, 2010, 46(9): 1086
doi: 10.3724/SP.J.1037.2010.00155
马英杰, 李晋炜, 雷家峰 等. 显微组织对TC4ELI合金疲劳裂纹扩展路径及扩展速率的影响 [J]. 金属学报, 2010, 46(9): 1086
doi: 10.3724/SP.J.1037.2010.00155
22 Xu Z L, Huang C W, Wan M P, et al. Influence of microstructure on strain controlled low cycle fatigue crack initiation and propagation of Ti-55531 alloy [J]. International Journal of Fatigue, 2022, 156: 106678
doi: 10.1016/j.ijfatigue.2021.106678
23 Wang L, Wang K, Li Y Q, et al. Low-cycle fatigue properties of TC4ELI titanium alloy [J]. Titanium Industry Progress, 2018, 35(2): 17
王 雷, 王 琨, 李艳青 等. TC4ELI钛合金低周疲劳性能研究[J]. 钛工业进展, 2018, 35(2): 17
24 Wang K, Li Y Q, Wang L, et al. Effect of strain amplitude on fatigue fracture mechanism of TC4 titanium alloy with duplex structure [J]. Hot Working Technology, 2018, 47(10): 86
王 琨, 李艳青, 王 雷 等. 应变幅值对双态组织TC4钛合金疲劳断裂机制的影响 [J]. 热加工工艺, 2018, 47(10): 86
25 Owolabi G, Okeyoyin O, Bamiduro O, et al. Extension of a probabilistic mesomechanics based model for fatigue notch factor to titanium alloy components [J]. Procedia Materials Science, 2014, 3: 1860
doi: 10.1016/j.mspro.2014.06.300
26 Tian W, Fu Y, Zhong Y, et al. Effects of notches on tensile properties and low cycle fatigue properties of TC17 titanium alloy [J]. Transactions of Materials and Heat Treatment, 2016, 37(11): 68
27 Li W, Zhao H Q, Nehila A, et al. Very high cycle fatigue of TC4 titanium alloy under variable stress ratio: Failure mechanism and life prediction [J]. International Journal of Fatigue, 2017, 104: 342
doi: 10.1016/j.ijfatigue.2017.08.004
28 Li X K, Zhu S P, Liao D, et al. Probabilistic fatigue modelling of metallic materials under notch and size effect using the weakest link theory [J]. International Journal of Fatigue, 2022, 159: 106788
doi: 10.1016/j.ijfatigue.2022.106788
29 Evans W J, Bache M R, Nicholas P J. The prediction of fatigue life at notches in the near alpha titanium alloy Timetal 834 [J]. International Journal of Fatigue, 2001, 23: 103
30 Wu Z R, Hu X T, Song Y D. Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading [J]. International Journal of Fatigue, 2014, 59: 170
doi: 10.1016/j.ijfatigue.2013.08.028
31 Ding M C, Zhang Y L, Li B, et al. Total fatigue life prediction of TC4 titanium alloy based on surface notch [J]. Engineering Failure Analysis, 2022, 131: 105868
doi: 10.1016/j.engfailanal.2021.105868
32 Li F, Yu X, Jiao L, et al. Research on low cycle fatigue properties of TA15 titanium alloy based on reliability theory [J]. Materials Science and Engineering: A, 2006, 30(1-2): 216
33 Shi S, Deng Q H, Zhang H, et al. Microstructure stability and damage mechanisms in an α/β Ti-6Al-4V-0.55Fe alloy during low cycle dwell-fatigue at room temperature [J]. International Journal of Fatigue, 2022, 155: 106585
doi: 10.1016/j.ijfatigue.2021.106585
34 Nag A K, Praveen K V U, Singh V. Low cycle fatigue behaviour of Ti-6Al-5Zr-0.5Mo-0.25Si alloy at room temperature [J]. Bulletin of Materials Science, 2006, 29(3): 271
doi: 10.1007/BF02706496
35 Zhang M D, Cao J X, Huang X. Local softening behavior accompanied by dislocation multiplication accelerates the failure of Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloy under dwell fatigue load [J]. Scripta Materialia, 2020, 186: 33
doi: 10.1016/j.scriptamat.2020.03.054
36 Osgood W R, Ramberg W. Description of stress-strain curves by three parameters [R]. Washington, USA: N. TN-902, 1943
37 Tong X Y, Wang D J, Xu H. Experimental investigation on cyclic hysteretic energy of carbon and alloy steels [J]. Acta Metallurgica Sinica, 1989, 25(5): 359
童小燕, 王德俊, 徐 灏. 碳钢和合金钢的循环滞回能实验研究 [J]. 金属学报, 1989, 25(5): 359
38 Yadav S S, Roy S C, Veerababu J, et al. Quantitative assessment and analysis of non-masing behavior of materials under fatigue [J]. Journal of Materials Engineering and Performance, 2021, 30(3): 2102l
doi: 10.1007/s11665-021-05494-w
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!