|
|
Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy |
LIU Tianfu1, ZHANG Bin1( ), ZHANG Junfeng2, XU Qiang3, SONG Zhuman4, ZHANG Guangping4 |
1.Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shengyang 110819, China 2.Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 3.China Ship Scientific Research Center, Wuxi 214082, China 4.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
LIU Tianfu, ZHANG Bin, ZHANG Junfeng, XU Qiang, SONG Zhuman, ZHANG Guangping. Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy. Chinese Journal of Materials Research, 2023, 37(7): 511-522.
|
Abstract The low-cycle fatigue behavior of TC4 ELI (Extra-low-interstitial) alloy plates for pressure shells in deep-sea submersible with different notch stress concentration factors under constant total strain amplitude was investigated. The results indicate that cyclic harding and cyclic softening occur in the smooth specimens under the lower strain amplitude (≤0.7%) and higher strain amplitudes (0.8% and 0.9%), respectively, at the initial stage of the cyclic loading. While the cyclic hardening occurs in all the notched specimens under the strain amplitudes of 0.2% to 0.7% at the initial stage of the cyclic loading. Based on the variation of material hysteretic energy under the cyclic loading, a relative crack initiation life prediction model was established to describe the damage degree of TC4ELI alloy specimens under the low cycle fatigue loading. The relationship between notch stress concentration factors and low cycle fatigue performance parameters was also described. This model can effectively predict the relative fatigue crack initiation life of TC4ELI alloy with low notch stress concentration factor under high strain amplitude conditions.
|
Received: 07 June 2022
|
|
Fund: National Natural Science Foundation of China(51971060);National Natural Science Foundation of China(52171128) |
Corresponding Authors:
ZHANG Bin, Tel: (024) 83691585, E-mail: zhangb@atm.neu.edu.cn
|
1 |
Zhan Z X. Experiments and numerical simulations for the fatigue behavior of a novel TA2-TA15 titanium alloy fabricated by laser melting deposition [J]. International Journal of Fatigue, 2019, 121: 20
doi: 10.1016/j.ijfatigue.2018.12.001
|
2 |
He B B, Wu W H, Zhang L, et al. Microstructural characteristic and mechanical property of Ti6Al4V alloy fabricated by selective laser melting [J]. Vacuum, 2018, 150: 79
doi: 10.1016/j.vacuum.2018.01.026
|
3 |
Jiang X J, Chen G Y, Men X L, et al. Ultrafine duplex microstructure and excellent mechanical properties of TC4 alloy via a novel thermo- mechanical treatment [J]. Journal of Alloys and Compounds, 2018, 767: 617
doi: 10.1016/j.jallcom.2018.07.141
|
4 |
Bai C Y, Lan L, Xin R Y, et al. Microstructure evolution and cyclic deformation behavior of Ti-6Al-4 V alloy via electron beam melting during low cycle fatigue [J]. International Journal of Fatigue, 2022, 159: 106784
doi: 10.1016/j.ijfatigue.2022.106784
|
5 |
Zhang M D, Cao J X, Li T, et al. The effect of transformed β-phase on local area plastic deformation and dislocation characteristics of Ti6242s alloy under low-cycle fatigue and dwell fatigue [J]. Materials Science and Engineering: A, 2021, 802: 140643
doi: 10.1016/j.msea.2020.140643
|
6 |
Carrion P E, Shamsaei N, Daniewicz S R, et al. Fatigue behavior of Ti-6Al-4V ELI including mean stress effects [J]. International Journal of Fatigue, 2017, 99: 87
doi: 10.1016/j.ijfatigue.2017.02.013
|
7 |
Galarraga H, Warren R J, Lados D A, et al. Fatigue crack growth mechanisms at the microstructure scale in as-fabricated and heat treated Ti-6A1-4V ELI manufactured by electron beam melting (EBM) [J]. Engineering Fracture Mechanics, 2017, 176: 263
doi: 10.1016/j.engfracmech.2017.03.024
|
8 |
Galarraga H, Warren R J, Lados D A, et al. Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM) [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2017, 685: 417
doi: 10.1016/j.msea.2017.01.019
|
9 |
Benedetti M, Torresani E, Leoni M, et al. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71: 295
doi: S1751-6161(17)30139-X
pmid: 28376363
|
10 |
Zhang J, Zuo X, Wang W, et al. Overviews of investigation on submersible pressure hulls [J]. Advances in Natural Science, 2014, 7(4): 54
|
11 |
Yuan Y, Zhang M, Li X, et al. Research on underwater pre-installed unmanned combat equipment [J]. Tactical Missile Technology, 2018, (1): 51
|
|
袁亚, 张 木, 李 翔 等. 国外水下预置无人作战装备研究 [J]. 战术导弹技术, 2018, (1): 51
|
12 |
Li W Y, Wang S, Liu T, et al. Current status and progress on pressure hull structure of manned deep submersible [J]. Shipbuilding of China, 2016, 57(1): 210
|
|
李文跃, 王 帅, 刘 涛 等. 大深度载人潜水器耐压壳结构研究现状及最新进展[J]. 中国造船, 2016, 57(1): 210
|
13 |
Zhang Y, Liu X M, Lei X Q, et al. New structural desigin of spherical pressure hull for deep-sea submersibles: a multilayer and pressure redistribution approach [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1231
doi: 10.6052/0459-1879-17-156
|
|
张 吟, 刘小明, 雷现奇 等. 基于分层分压结构的新型潜水器耐压壳结构设计 [J]. 力学学报, 2017, 49(6): 1231
|
14 |
Shen Y S, Li W Y, Jiang X Y. Parameter research of test pressure and stress criterion for the titanium-alloy manned pressure hulls[J]. The ocean engineering, 2019, 37(5): 10
|
|
沈允生, 李文跃, 姜旭胤. 钛合金载人舱球壳试验压力和应力衡准取值研究 [J]. 海洋工程, 2019, 37(5): 10
|
15 |
Yu C L, Chen Z T, Chen C, et al. Influence of initial imperfections on ultimate strength of spherical shells [J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(5): 473
doi: 10.1016/j.ijnaoe.2017.02.003
|
16 |
Gao P F, Lei Z N, Li Y K, et al. Low-cycle fatigue behavior and property of TA15 titanium alloy with tri-modal microstructure [J]. Materials Science & Engineering A, 2018, 736: 1
|
17 |
Pan X N, Xu S W, Qian G A, et al. The mechanism of internal fatigue-crack initiation and early growth in a titanium alloy with lamellar and equiaxed microstructure[J]. Materials Science and Engineering: A, 2020, 798: 140110
doi: 10.1016/j.msea.2020.140110
|
18 |
Wang Y F, Chen R, Cheng X, et al. Effects of microstructure on fatigue crack propagation behavior in a bi-modal TC11 titanium alloy fabricated via laser additive manufacturing[J]. Journal of Materials Science & Technology, 2019, 35(2): 403
|
19 |
Guo P, Zhao Y Q, Zeng W D. Fatigue crack growth behavior in TC4-DT titanium alloy with different lamellar microstructures [J]. Rare Metal Materials and Engineering, 2015, 44(2): 277
doi: 10.1016/S1875-5372(15)30019-9
|
20 |
Wan M P, Wu Y J, Xu P W. Effects of microstructure on fatigue crack propagation rate of TC4ELI alloy [J]. Hot Working Technology, 2012, 41(16): 20
|
|
万明攀, 伍玉娇, 徐平伟. TC4ELI合金显微组织对疲劳裂纹扩展速率的影响 [J]. 热加工工艺, 2012, 41(16): 20
|
21 |
Ma Y J, Li J W, Lei J f, et al. Influences of microstructure on fatigue crack propagating path and crack growth rates in TC4 ELI alloy [J]. Acta Metallurgica Sinica, 2010, 46(9): 1086
doi: 10.3724/SP.J.1037.2010.00155
|
|
马英杰, 李晋炜, 雷家峰 等. 显微组织对TC4ELI合金疲劳裂纹扩展路径及扩展速率的影响 [J]. 金属学报, 2010, 46(9): 1086
doi: 10.3724/SP.J.1037.2010.00155
|
22 |
Xu Z L, Huang C W, Wan M P, et al. Influence of microstructure on strain controlled low cycle fatigue crack initiation and propagation of Ti-55531 alloy [J]. International Journal of Fatigue, 2022, 156: 106678
doi: 10.1016/j.ijfatigue.2021.106678
|
23 |
Wang L, Wang K, Li Y Q, et al. Low-cycle fatigue properties of TC4ELI titanium alloy [J]. Titanium Industry Progress, 2018, 35(2): 17
|
|
王 雷, 王 琨, 李艳青 等. TC4ELI钛合金低周疲劳性能研究[J]. 钛工业进展, 2018, 35(2): 17
|
24 |
Wang K, Li Y Q, Wang L, et al. Effect of strain amplitude on fatigue fracture mechanism of TC4 titanium alloy with duplex structure [J]. Hot Working Technology, 2018, 47(10): 86
|
|
王 琨, 李艳青, 王 雷 等. 应变幅值对双态组织TC4钛合金疲劳断裂机制的影响 [J]. 热加工工艺, 2018, 47(10): 86
|
25 |
Owolabi G, Okeyoyin O, Bamiduro O, et al. Extension of a probabilistic mesomechanics based model for fatigue notch factor to titanium alloy components [J]. Procedia Materials Science, 2014, 3: 1860
doi: 10.1016/j.mspro.2014.06.300
|
26 |
Tian W, Fu Y, Zhong Y, et al. Effects of notches on tensile properties and low cycle fatigue properties of TC17 titanium alloy [J]. Transactions of Materials and Heat Treatment, 2016, 37(11): 68
|
27 |
Li W, Zhao H Q, Nehila A, et al. Very high cycle fatigue of TC4 titanium alloy under variable stress ratio: Failure mechanism and life prediction [J]. International Journal of Fatigue, 2017, 104: 342
doi: 10.1016/j.ijfatigue.2017.08.004
|
28 |
Li X K, Zhu S P, Liao D, et al. Probabilistic fatigue modelling of metallic materials under notch and size effect using the weakest link theory [J]. International Journal of Fatigue, 2022, 159: 106788
doi: 10.1016/j.ijfatigue.2022.106788
|
29 |
Evans W J, Bache M R, Nicholas P J. The prediction of fatigue life at notches in the near alpha titanium alloy Timetal 834 [J]. International Journal of Fatigue, 2001, 23: 103
|
30 |
Wu Z R, Hu X T, Song Y D. Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading [J]. International Journal of Fatigue, 2014, 59: 170
doi: 10.1016/j.ijfatigue.2013.08.028
|
31 |
Ding M C, Zhang Y L, Li B, et al. Total fatigue life prediction of TC4 titanium alloy based on surface notch [J]. Engineering Failure Analysis, 2022, 131: 105868
doi: 10.1016/j.engfailanal.2021.105868
|
32 |
Li F, Yu X, Jiao L, et al. Research on low cycle fatigue properties of TA15 titanium alloy based on reliability theory [J]. Materials Science and Engineering: A, 2006, 30(1-2): 216
|
33 |
Shi S, Deng Q H, Zhang H, et al. Microstructure stability and damage mechanisms in an α/β Ti-6Al-4V-0.55Fe alloy during low cycle dwell-fatigue at room temperature [J]. International Journal of Fatigue, 2022, 155: 106585
doi: 10.1016/j.ijfatigue.2021.106585
|
34 |
Nag A K, Praveen K V U, Singh V. Low cycle fatigue behaviour of Ti-6Al-5Zr-0.5Mo-0.25Si alloy at room temperature [J]. Bulletin of Materials Science, 2006, 29(3): 271
doi: 10.1007/BF02706496
|
35 |
Zhang M D, Cao J X, Huang X. Local softening behavior accompanied by dislocation multiplication accelerates the failure of Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloy under dwell fatigue load [J]. Scripta Materialia, 2020, 186: 33
doi: 10.1016/j.scriptamat.2020.03.054
|
36 |
Osgood W R, Ramberg W. Description of stress-strain curves by three parameters [R]. Washington, USA: N. TN-902, 1943
|
37 |
Tong X Y, Wang D J, Xu H. Experimental investigation on cyclic hysteretic energy of carbon and alloy steels [J]. Acta Metallurgica Sinica, 1989, 25(5): 359
|
|
童小燕, 王德俊, 徐 灏. 碳钢和合金钢的循环滞回能实验研究 [J]. 金属学报, 1989, 25(5): 359
|
38 |
Yadav S S, Roy S C, Veerababu J, et al. Quantitative assessment and analysis of non-masing behavior of materials under fatigue [J]. Journal of Materials Engineering and Performance, 2021, 30(3): 2102l
doi: 10.1007/s11665-021-05494-w
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|