Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (6): 408-416    DOI: 10.11901/1005.3093.2021.697
ARTICLES Current Issue | Archive | Adv Search |
Sliding Friction and Wear between Rare Earth Modified GCR15 Steel against Cage Materials
LI Linlong1, YANG Liqi2, XUE Weihai2(), GAO Siyang2, WANG Xu1, DUAN Deli2, LI Shu2
1.School of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113005, China
2.Institute of Metal Research, Chinese Academy of Sciences, Liaoning Key Laboratory of Aero-engine Materials Tribology, Shenyang 110016, China
Cite this article: 

LI Linlong, YANG Liqi, XUE Weihai, GAO Siyang, WANG Xu, DUAN Deli, LI Shu. Sliding Friction and Wear between Rare Earth Modified GCR15 Steel against Cage Materials. Chinese Journal of Materials Research, 2023, 37(6): 408-416.

Download:  HTML  PDF(14776KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The sliding tribological behavior of rare earth-modified GCr15 bearing steel against bakelite cage material was investigated via ring/block tester under grease lubrication conditions, in comparison with the ordinary GCr15 bearing steel. The results show that although the measured friction coefficient between rare earth GCr15 steel and bakelite material is larger, its wear volume is smaller than the ordinary GCr15 steel; both bearing steels have experienced material removal mainly caused by abrasive wear, and their wear volume tends to decrease with the increasing rotation speed; only furrows can be seen on the surface of the wear scar of rare earth GCr15 steel, while the ordinary GCr15 steel has more flaking in addition to the furrows that are removed during abrasive wear. The influence of the rare earth induced microstructural improvement of the GCr15 steel on its service behavior is discussed in terms of carbides, non-metallic inclusions and retained austenite. It follows that although rare earth modification reduces the hardness of bearing steel to a certain extent, but it can effectively suppress the fracture removal mechanism in abrasive wear, that GCr15 bearing steel inevitably appears during service, i.e., material spalling, thereby its wear resistance under sliding friction conditions is improved.

Key words:  metallic materials      rare earth modification      GCr15 steel      sliding friction      frictional wear     
Received:  21 December 2021     
ZTFLH:  TG142.1+3  
Fund: Strategic Priority Research Program of the Chinese Academy of Sciences(XDC04040401)
Corresponding Authors:  XUE Weihai, Tel: 15902407570, E-mail: whxue@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.697     OR     https://www.cjmr.org/EN/Y2023/V37/I6/408

Fig.1  Schematic diagram of test principle
CSiMnCrSAlPTiT[O]RE
Rare earth GCr150.970.250.361.510.0030.0190.0120.00124.7×10-60.0065
Ordinary GCr150.970.240.371.500.0030.0180.0120.00125.5×10-6-
Table1  Rare earth/ordinary GCr15 steel chemical composition (%, mass fraction)
Fig.2  Shape and size of sample for friction and wear test (a) block specimen, (b) ring specimen
1234Average
Rare earth GCr1560.660.660.960.360.6
Ordinary GCr1563.163.863.063.863.4
Table 2  HRC hardness of rare earth/ordinary GCr15 steel
Fig.3  SEM images of block samples (a) rare earth GCr15 (b) ordinary GCr15
Fig.4  Friction coefficient curves of different material mates at different speeds
Fig.5  Wear volume of rare earth/ordinary GCr15 steel block samples
Fig.6  Morphologies of wear marks of different materials at different rotational speeds
Fig.7  Morphology of exfoliation in ordinary GCr15 steel (a) surface, (b) section
ElementSurfaceSection
C47.9246.51
O7.5316.94
Si-0.27
Cr2.161.41
Fe42.3934.87
Table 3  Energy spectrum analysis of spalling pits (%, mass fraction)
Fig.8  Size distribution of carbide in block sample
Fig.9  Spalling photos of ordinary GCr15 bearing steel
CompositionMgOAl2O3SiO2CaOMnOCaSMnSTiNRESREO
Rare earth GCr150.656.980.000.000.200.060.98-87.633.50
Ordinary GCr156.1128.830.040.034.410.9951.737.86--
Table 4  Inclusion content statistics table of rare earth/ordinary GCr15 bearing steel (%, mass fraction)
Fig.10  Inclusions in rare earth/ordinary GCr15 bearing steel
Fig.11  Dimension distribution of non-metallic inclusions in rare earth/ordinary GCr15 bearing steel
Fig.12  XRD spectrum of wear marks of rare earth/ordinary GCr15 bearing steel
1 Li D H, Li Z M, Xiao M G, et al. Effect of deep cryogenic treatment on mechanical property and microstructure of a low carbon high alloy martensitic bearing steel during tempering [J]. Chinese Journal of Materials Research, 2019, 33(8): 11
李东辉, 李志敏, 肖茂果 等. 深冷处理对低碳高合金马氏体轴承钢力学性能及组织的影响 [J]. 材料研究学报, 2019, 33(8): 11
2 Li Z K, Lei J Z, Xu H F, et al. Current status and development trend of bearing steel in China and abroad [J]. Journal of Iron and Steel Research, 2016. 28(03): p.1
3 Wu D, Zhang X C, Li Y F, et al. Characterization of machined surface quality and near-surface microstructure of a high speed thrust angular contact ball bearing [J]. Journal of Materials Science & Technology, 2021, 86: 219
4 Yu F, Chen X P, Xu H F, et al. Metallurgical quality and fatigue performance of rolling bearing steel and development direction of high-end bearing steel [J]. Metallurgica Sinica, 2020, 56(04): 513
俞 峰, 陈兴品, 徐海峰 等. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向 [J]. 金属学报, 2020, 56(04): 513
5 Xi S, Cao H, Chen X, Dynamic modeling of machine tool spindle bearing system and model based diagnosis of bearing fault caused by collision [J]. Procedia CIRP, 2018, 77: 614
doi: 10.1016/j.procir.2018.08.197
6 He T T, Shao R N, Liu J, et al. Sliding friction and wear properties of GCr15 steelunder different loads [J]. Journal of Materials heat Treatment, 2020, 41(7): 105
贺甜甜, 邵若男, 刘 建 等. 不同载荷下GCr15 钢的滑动摩擦磨损性能 [J]. 材料热处理学报, 2020, 41(7): 105
doi: 10.13289/j.issn.1009-6264.2019-0553
7 Su B, Zhang S. Friction and wear behaviors of GCr15 steel under dry friction and grease lubrication [A]. Asia-Pacific Materials Science and Information Technology Conference [C]. Shanghai, 2014
8 Wang Z N, Cui H Z, Zhang G S.et al. Microstructure and room-temperature dry sliding wear behavior of GCr15 steel treated by surface induction hardening [J]. Journal of Materials heat Treatment, 2015, 36(11): 180
王泽宁, 崔洪芝, 张国松 等. GCr15 钢表面感应淬火微观组织及室温干滑动磨损行为 [J]. 材料热处理学报, 2015. 36(11): 180
9 Zhang Y F, Zhou S H, Zhang G, et al. The friction and wear behaviors of polyimide bearing retainer under point-contact condition [J]. Industrial Lubrication and Tribology, 2020, 72(7): 931
doi: 10.1108/ILT-01-2020-0017
10 Xu Y. Development of impact sliding wear testing machine and performance test of PTFE matrix composites [D]. Harbin: Harbin Institute of Technology, 2013
徐 扬. 冲击滑动磨损试验机的研制及PTFE基复合材料性能测试 [D]. 哈尔滨: 哈尔滨工业大学, 2013
11 Wei W, Li H, Guo X D. The Application of rare earth in the production of bearing steel [J]. Chinese Rare Earths, 2020, 41(3): 139
12 Chang L Z, Gao G, Zheng F Z et al. Effect of rare earth and magnesium complex treatment on inclusions in GCr15 bearing steel [J]. Chinese Journal of Engineering, 2019, 41(6): 763
13 Qiu M, Li Y C, Chen L, et al. Effects of rare earth treatment on tribological properties of self-lubricating spherical plain bearings [J]. Wear, 2013, 305(1-2): 274
doi: 10.1016/j.wear.2012.12.021
14 Yang C Y, Luan Y K, Li D Z, et al. Very high cycle fatigue behavior of bearing steel with rare earth addition [J]. International Journal of Fatigue, 2020. 131: 105263.1
15 Xu C C, Zhang L S. Effect of rare earth elements on the performance of bearing steel [J]. Acta Metall Sin. 1984, (4): 303
许传才, 张隆水. 稀土改善轴承钢性能的试验 [J]. 金属学报, 1984, (4): 303
16 Yang C Y, Luan Y K, Li D Z, et al. Effects of rare earth elements on inclusions and impact toughness of high-carbon chromium bearing steel [J]. Journalof Materials Heat Treatment, 2019, 35(7): 1298
17 Gui W M, Liu Y, Zhang X T, et al. Effect of rare earth addition on microstructure, mechanical property and nitriding performance of a medium carbon steel [J]. Chinese Journal of Materials Research, 2021, 35(1): 9
桂伟民, 刘 义, 张晓田 等. 稀土元素对中碳钢组织,力学性能和渗氮的影响 [J]. 材料研究学报, 2021, 35(1): 9
18 Cao Y J. Study on residual stress and friction wear properties of Ball Screw surface during induction hardening [D]. Qingdao: Shandong University of Science and Technology, 2018
曹勇军. 滚珠丝杠表面感应淬火残余应力及摩擦磨损性能研究 [D]. 青岛: 山东科技大学, 2018
19 Wang Z S, Xie W, Peng Z, et al. Environment-induced brittle wear mechanism of K417G alloy [J]. Journal of Materials Research, 2021, 35(07): 501
王振生, 谢 威, 彭 真 等. K417G合金的环境致脆磨损机理 [J]. 材料研究学报, 2021, 35(07): 501
20 Sun F L, Geng K, Yu F, et al. Relationship of inclusions and rolling contact fatigue life for ultra-clean bearing steel [J]. Acta Metall Sin. 2020, 56(05): 693
孙飞龙, 耿 克, 俞 峰 等. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系 [J]. 金属学报, 2020, 56(05): 693
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!