Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (5): 391-400    DOI: 10.11901/1005.3093.2022.448
ARTICLES Current Issue | Archive | Adv Search |
Plastic Deformation Behavior of Selective Laser Melting 316L Stainless Steel under High Strain Rate Compression
LIU Tao1,2,3(), YIN Zhiqiang1, LEI Jingfa1,2, GE Yongsheng1, SUN Hong1,2
1.School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China
2.Anhui Provincial Key Laboratory of Intelligent Manufacturing of Construction Machinery, Hefei 230601, China
3.Anhui Province Key Laboratory of Human Safety, Hefei 230601, China
Cite this article: 

LIU Tao, YIN Zhiqiang, LEI Jingfa, GE Yongsheng, SUN Hong. Plastic Deformation Behavior of Selective Laser Melting 316L Stainless Steel under High Strain Rate Compression. Chinese Journal of Materials Research, 2023, 37(5): 391-400.

Download:  HTML  PDF(19636KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The selective laser melting 316L stainless steel (SLM-316L) was prepared with preferred process parameters, and then the effect of high strain rate compression on the plastic deformation behavior of SLM 316L stainless steel by high strain rates (1000, 2000 and 3000 s-1) was assessed by means of split Hopkinson pressure bar, scanning electron microscope and backscattered electron diffractometer in terms of the microstructure and microscopic deformation such as dislocation slip and twinning etc. Results show that SLM-316L stainless steel exhibits a significant strain rate strengthening effect by high strain-rate loading, and its microstructure is composed of closely packed columnar grains with irregular polygonal cross section. High strain rate loading decreases the degree of preferred orientation of grains and increases the number of small-angle grain boundaries and twin boundaries, and the twin boundaries are densely emerge in the cross-twisting region of small-angle grain boundaries. The plastic deformation process of the SLM-316L stainless steel is accompanied by dislocation slip and twinning behavior.

Key words:  metallic materials      plastic deformation      high strain rate compression      316L stainless steel      selective laser melting     
Received:  18 August 2022     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(51805003);Anhui Education Department Excellent Young Talent Support Project(gxyqZD2019057);the Foundation of Anhui Province Key Laboratory of Human Safety(DEPS-2021-02)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.448     OR     https://www.cjmr.org/EN/Y2023/V37/I5/391

Fig.1  Micro morphology (a) and particle size distribu-tion of powder (b)
ElementsSiCrMnMoNiFe
Mass fraction/%0.7417.950.722.4610.94Bal.
Atomic fraction/%1.4719.180.721.4210.35Bal.
Table 1  Element composition of the powder
Fig.2  Working principle of SLM forming equipment
Fig.3  Schematic diagram of SHPB device
Fig.4  Original waveform of dynamic compression experiment
Fig.5  Stress balance curves
Fig.6  Microstructure characterization specimens (a) SLM molding specimen, (b) cuboid specimen
Fig.7  Dynamic compressive stress-strain curves (a) stress-strain curves (1000, 2000 and 3000 s-1), (b) analysis of curves
Fig.8  Micromorphology of specimen before high strain rate loading (a) laser scanning plane, (b) construction section, (c) enlarged image of zone I, (d) enlarged image of zone II, (e) enlarged image of zone III
Fig.9  Schematic diagram of columnar cell crystal and close-packed structure (a) columnar cell crystal structure, (b) close-packed structure
Fig.10  Micromorphology of specimen after high strain rate loading (a) laser scanning plane, (b) construction section
Fig.11  Crystal morphology and orientation analysis (a) crystal orientation figure of the initial specimen, (b) crystal orientation figure of the deformed specimen, (c) pole figure and inverse pole figure of the initial specimen, (d) pole figure and inverse pole figure of the deformed specimen
Fig.12  Statistics of grain size (a) the initial specimen, (b) the deformed specimen
Fig.13  Distribution of large and small angle grain boundaries (a) grain boundary figure of the initial specimen, (b) grain boundary figure of the deformed specimen, (c) grain boundary statistical diagram of the initial specimen, (d) grain boundary statistical diagram of the deformed specimen
Fig.14  Distribution of twin boundaries (a) the initial specimen, (b) the deformed specimen
Fig.15  KAM figures and dislocation density statistical diagrams of specimens (a) KAM figure of the initial specimen, (b) KAM figure of the deformed specimen, (c) dislocation density statistical diagram of the initial specimen, (d)dislocation density statistical diagram of the deformed specimen
1 Lee W S, Chen T H, Lin C F, et al. Impact response and microstructural evolution of 316L stainless steel under ambient and elevated temperature conditions [J]. Metall. Mater. Trans., 2012, 43A(11) : 3998
2 Ziętala M, Durejko T, Panowicz R, et al. Microstructure evolution of 316L steel prepared with the use of additive and conventional methods and subjected to dynamic loads: a comparative study [J]. Materials, 2020, 13(21): 4893
doi: 10.3390/ma13214893
3 Yvell K, Grehk T M, Engberg G. Microstructure characterization of 316L deformed at high strain rates using EBSD [J]. Mater. Charact., 2016, 122: 14
doi: 10.1016/j.matchar.2016.10.017
4 Li J N, Gao D, Lu Y, et al. Mechanical properties and microstructure evolution of additive manufactured 316L stainless steel under dynamic loading [J]. Mater. Sci. Eng., 2022, 855A: 143896
5 Song R B, Xiang J Y, Hou D P. Characteristics of mechanical properties and microstructure for 316L austenitic stainless steel [J]. J. Iron Steel Res. Int., 2011, 18(11): 53
6 Chen W, Yin G F, Feng Z, et al. Effect of powder feedstock on microstructure and mechanical properties of the 316L stainless steel fabricated by selective laser melting [J]. Metals, 2018, 8(9): 729
doi: 10.3390/met8090729
7 Gray G T, Livescu V, Rigg P A, et al. Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel [J]. Acta Mater., 2017, 138: 140
doi: 10.1016/j.actamat.2017.07.045
8 Shao K, Zhou Q L, Liu Y, et al. Effect of laser power on the mechanical properties of selective laser melted 316L stainless steel [J]. Laser. Eng., 2022, 53(5-6): 393
9 Chen J, Wei H Y, Bao K, et al. Dynamic mechanical properties of 316L stainless steel fabricated by an additive manufacturing process [J]. J. Mater. Res. Technol., 2021, 11: 170
doi: 10.1016/j.jmrt.2020.12.097
10 Cai G D, Cheng X Y, Wang D. Preparation of 316L stainless steel products by fused deposition model 3D-printing and effect of La on morphology and distribution of precipitates [J]. Chin. J. Mater. Res., 2020, 34(8): 635
蔡国栋, 程西云, 王 典. FDM型3D打印316L不锈钢试样和La对析出物形貌和分布的影响 [J]. 材料研究学报, 2020, 34(8): 635
doi: 10.11901/1005.3093.2019.591
11 Kim K T. Mechanical performance of additively manufactured austenitic 316L stainless steel [J]. Nucl. Eng. Technol., 2022, 54(1): 244
doi: 10.1016/j.net.2021.07.041
12 Chen J, Wei H Y, Zhang X F, et al. Flow behavior and microstructure evolution during dynamic deformation of 316L stainless steel fabricated by wire and arc additive manufacturing [J]. Mater. Des., 2021, 198: 109325
doi: 10.1016/j.matdes.2020.109325
13 Chang C, Wu W, Zhang H, et al. Mechanical characteristics of superimposed 316L lattice structures under static and dynamic loading [J]. Adv. Eng. Mater., 2021, 23(7): 2001536
doi: 10.1002/adem.v23.7
14 Liverani E, Toschi S, Ceschini L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel [J]. J. Mater. Process. Technol., 2017, 249: 255
doi: 10.1016/j.jmatprotec.2017.05.042
15 Jiang H Z, Fang J H Y, Chen Q S, et al. State of the art of selective laser melted 316L stainless steel: process, microstructure, and mechanical properties [J]. Chin. J. Lasers, 2022, 49(14): 1402804
蒋华臻, 房佳汇钰, 陈启生 等. 激光选区熔化成形316L不锈钢工艺、微观组织、力学性能的研究现状 [J]. 中国激光, 2022, 49(14): 1402804
16 Ma Y Y, Liu Y D, Shi W T, et al. Effect of scanning speed on forming defects and properties of selective laser melted 316L stainless steel powder [J]. Laser Optoelectron. Progr., 2019, 56(10): 101403
马英怡, 刘玉德, 石文天 等. 扫描速度对选区激光熔化316L不锈钢粉末成形缺陷及性能的影响 [J]. 激光与光电子学进展, 2019, 56(10): 101403
17 Carassus H, Guérin J D, Morvan H, et al. An experimental investigation into influences of build orientation and specimen thickness on quasi-static and dynamic mechanical responses of selective laser melting 316L stainless steel [J]. Mater. Sci. Eng., 2022, 835A: 142683
18 Waqar S, Liu J W, Sun Q D, et al. Effect of post-heat treatment cooling on microstructure and mechanical properties of selective laser melting manufactured austenitic 316L stainless steel [J]. Rapid Prototyping J., 2020, 26(10): 1739
doi: 10.1108/RPJ-12-2019-0320
19 Zeng F Y, Yang Y T, Qian G A. Fatigue properties and S-N curve estimating of 316L stainless steel prepared by SLM [J]. Int. J. Fatigue, 2022, 162: 106946
doi: 10.1016/j.ijfatigue.2022.106946
20 Yu C F, Zhao C C, Zhang Z F, et al. Tensile properties of selective laser melted 316L stainless steel [J]. Acta Metall. Sin., 2020, 56(5): 683
余晨帆, 赵聪聪, 张哲峰 等. 选区激光熔化316L不锈钢的拉伸性能 [J]. 金属学报, 2020, 56(5): 683
doi: 10.11900/0412.1961.2019.00278
21 Wang C, Lin X, Wang L L, et al. Cryogenic mechanical properties of 316L stainless steel fabricated by selective laser melting [J]. Mater. Sci. Eng., 2021, 815A: 141317
22 Wang X, Liu C, Zhou Z Q, et al. In-situ EBSD investigation of plastic damage in a 316 austenitic stainless steel and its molecular dynamics (MD) simulations [J]. J. Mater. Res. Technol., 2021, 13: 823
doi: 10.1016/j.jmrt.2021.05.010
23 Narayana P L, Lee S W, Park C H, et al. Modeling high-temperature mechanical properties of austenitic stainless steels by neural networks [J]. Comp. Mater. Sci., 2020, 179: 109617
doi: 10.1016/j.commatsci.2020.109617
24 Li Y L, Ge Y S, Lei J F, et al. Mechanical properties and constitutive model of selective laser melting 316L stainless steel at different scanning speeds [J]. Adv. Mater. Sci. Eng., 2022, 2022: 2905843
25 Lee W S, Lin C F, Chen T H, et al. High temperature deformation and fracture behaviour of 316L stainless steel under high strain rate loading [J]. J. Nucl. Mater., 2012, 420(1-3): 226
doi: 10.1016/j.jnucmat.2011.10.005
26 Zhou S F, Xie M, Wu C Y, et al. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104: 81
doi: 10.1016/j.jmst.2021.06.062
27 Yang D C, Zhao Y, Kan X F, et al. Twinning behavior in deformation of SLM 316L stainless steel [J]. Mater. Res. Express, 2022, 9(9): 096502
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!