Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (5): 381-390    DOI: 10.11901/1005.3093.2022.367
ARTICLES Current Issue | Archive | Adv Search |
Effect of Thermal Aging on Mechanical Properties and Intergranular Corrosion Resistance of 316LN
YANG Baolei1,2, LIU Tingguang2(), SU Xianglin3, FAN Yu2, QIU Liang1, LU Yonghao2
1.Tianjin Heavy Equipment Engineering Research Co., Ltd., Tianjin 300450, China
2.National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
3.Research Institute of Processing Technology, Inner Mongolia First Machinery Group Co., Ltd., North Industries Group Co., Ltd., Baotou 014030, China
Cite this article: 

YANG Baolei, LIU Tingguang, SU Xianglin, FAN Yu, QIU Liang, LU Yonghao. Effect of Thermal Aging on Mechanical Properties and Intergranular Corrosion Resistance of 316LN. Chinese Journal of Materials Research, 2023, 37(5): 381-390.

Download:  HTML  PDF(20122KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nitrogen enhanced low carbon 316LN stainless steel, as a single-phase austenitic stainless steel, is selected as a candidate material of primary pipe for the third-generation pressurized water reactors. In the present work, the solution annealed 316LN was thermal aged at 400℃ for 400, 1000, 5000 and 10000 hours, respectively. The microstructures of the solution annealed and thermal aged steels were compared by optical microscope, scanning electron microscope (SEM), electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). The effect of thermal aging on mechanical properties of the steels was evaluated by using small punch test, nanoindentation and microhardness tester. The intergranular corrosion resistance of the steels was measured by using electrolytic etching in oxalic acid solution, and the effect of thermal aging on the corrosion resistance of various types of grain boundaries were characterized by using EBSD and atomic force microscope (AFM). The results show that thermal aging at 400℃ for 10000 h will not cause microstructural changes in the micron level of 316LN stainless steel. No change was observed in grain size, grain boundary morphology and characteristics of grain boundary distribution, and no new phase was formed during thermal aging. However, after thermal aging, the lattice parameter becomes smaller, which may be ascribed to that the interstitial atoms and dislocations originally dissolved in grains diffused and migrated towards the grain boundaries. This may result in changes of the mechanical properties of the 316LN, including the increase of strength and hardness, and the lower of plasticity and intergranular corrosion resistance. The intergranular corrosion susceptibilities of all types of grain boundaries increase with the extension of thermal aging time, but the susceptibility of coincidence site lattice (CSL) grain boundaries is always lower than that of random grain boundaries. Hence grain boundary engineering, which is a thermomechanical process and could produce high fraction of low-∑CSL grain boundaries in materials, could be applied to mitigate the intergranular corrosion of 316LN.

Key words:  metallic materials      316LN stainless steel      thermal aging      small punch test      intergranular corrosion      CSL grain boundary     
Received:  06 July 2022     
ZTFLH:  TG142.71  
Fund: National Key Research and Development Program of China(2019YFB1900905);Fundamental Research Funds for the Central Universities(FRF-TP-20-019A3)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.367     OR     https://www.cjmr.org/EN/Y2023/V37/I5/381

Fig.1  Small punch experimental device
Fig.2  Metallographic and scanning diagrams of 316LN after thermal aging at 400 ℃ for different time (a, a1) as-received, (b, b1) 400 h, (c, c1) 1000 h, (d, d1) 5000 h, (e, e1) 10000 h
Fig.3  Grain boundary network diagram of 316LN stainless steel with different thermal aging time
Fig.4  Grain boundary character distributions of samples after different time of thermal aging (red is the proportion of ∑3 boundaries; green is the proportion of ∑9 boundaries; blue is the proportion of ∑27 boundaries; and yellow is the proportion of all low-∑CSL boundaries)
Fig.5  XRD spectrum of 316LN stainless steel with different thermal aging time
Fig.6  Displacement-load curve of small punch test samples with different thermal aging time
Fig.7  Curves of small punch properties with different thermal aging time
Fig.8  Fracture of small punch specimens with different aging time
Fig.9  Nanoindentation curves (a), Relation of microhardness with thermal aging time (b), Curves (c) of nanoindentation hardness and elastic modulus with different thermal aging time
Fig.10  Intergranular corrosion maps of specimens with different thermal aging time
Fig.11  AFM micrographs of the 10000 h thermal aged sample after intergranular corrosion (a) and (c) the depth map of the position marked by black rectangle in Fig.3 was measured by AFM showed in two-dimension and three-dimension respectively, (b) and (d) three-dimension graph of Fig.11 a and c respectively
Fig.12  Linear profile comparisons of AFM along different types of boundaries on different specimens
As-received / nm

5000 h

/ nm

10000 h

/ nm

Random grain boundary190298460
∑3154223409
∑9103226304
Table 1  Different types of grain boundary corrosion depth with different thermal aging time
1 Shu G G, Lu N W. Aging problems and life evaluation for the key metallic components in PWR nuclear power plant [J]. Electr. Power, 2006(05): 53
束国刚, 陆念文. 压水堆核电厂关键金属部件的老化和寿命评估 [J]. 中国电力, 2006(05): 53
2 Wang X T, Li S L. Research status and development trend of nuclear power steel [J]. Adv. Mater. Ind., 2014(07): 2
王西涛, 李时磊. 核电用钢的研究现状及发展趋势 [J]. 新材料产业, 2014(07): 2
3 Fan Y, Liu T G, Xin L, et al. Thermal aging behaviors of duplex stainless steels used in nuclear power plant: A review [J]. J. Nucl. Mater., 2021, 544: 152693
doi: 10.1016/j.jnucmat.2020.152693
4 Li S, Wang Y, Wang X, et al. G-phase precipitation in duplex stainless steels after long-term thermal aging: A high-resolution transmission electron microscopy study [J]. J. Nucl. Mater., 2014, 452: 382
doi: 10.1016/j.jnucmat.2014.05.069
5 Schwarm S C, Mburu S, Kolli R P, et al. Effects of long-term thermal aging on bulk and local mechanical behavior of ferritic-austenitic duplex stainless steels [J]. Materials Science and Engineering: A, 2018, 720: 130
doi: 10.1016/j.msea.2018.02.058
6 Zhang H, Li S L, Liu G, et al. Effects of hot working on the microstructure and thermal ageing impact fracture behaviors of Z3CN20-09M duplex stainless steel [J]. Acta Metall. Sin., 2017, 53: 531
张 海, 李时磊, 刘 刚 等. 热加工对Z3CN20-09M双相不锈钢组织及热老化冲击断裂行为的影响 [J]. 金属学报, 2017, 53: 531
7 Yao Y H, Wei J F, Wang Z P. Effect of long-term thermal aging on the mechanical properties of casting duplex stainless steels [J]. Materials Science and Engineering: A, 2012, 551: 116
doi: 10.1016/j.msea.2012.04.105
8 Li S L, Wang Y L, Zhang H L, et al. Microstructure evolution and impact fracture behaviors of Z3CN20-09M stainless steels after long-term thermal aging [J]. J. Nucl. Mater., 2013, 433: 41
doi: 10.1016/j.jnucmat.2012.09.004
9 Guo C, Yu D, Sun X, et al. Fatigue failure mechanism and life prediction of a cast duplex stainless steel after thermal aging [J]. Int. J. Fatigue., 2021, 146: 106161
doi: 10.1016/j.ijfatigue.2021.106161
10 Xue F, Wang Z X, Shu G, et al. Thermal aging effect on Z3CN20.09M cast duplex stainless steel [J]. Nucl. Eng. Des., 2009, 239: 2217
doi: 10.1016/j.nucengdes.2009.06.009
11 Chen Y, Yang B, Zhou Y, et al. Evaluation of pitting corrosion in duplex stainless steel Fe20Cr9Ni for nuclear power application [J]. Acta Mater., 2020, 197: 172
doi: 10.1016/j.actamat.2020.07.046
12 Li S L, Wang Y L, Wang H, et al. Effects of long-term thermal aging on the stress corrosion cracking behavior of cast austenitic stainless steels in simulated PWR primary water [J]. J. Nucl. Mater., 2016, 469: 262
doi: 10.1016/j.jnucmat.2015.11.043
13 Cicero S, Setién J, Gorrochategui I. Assessment of thermal aging embrittlement in a cast stainless steel valve and its effect on the structural integrity [J]. Nucl. Eng. Des., 2009, 239: 16
doi: 10.1016/j.nucengdes.2008.09.009
14 Chandra K, Singhal R, Kain V, et al. Low temperature embrittlement of duplex stainless steel: Correlation between mechanical and electrochemical behavior [J]. Materials Science and Engineering: A, 2010, 527: 3904
doi: 10.1016/j.msea.2010.02.069
15 Wang M J, Chen L, Liu X C, et al. Influence of thermal aging on the SCC susceptibility of wrought 316LN stainless steel in a high temperature water environment [J]. Corros. Sci., 2014, 81: 117
doi: 10.1016/j.corsci.2013.12.011
16 Wang Y Q, Yang B, Han J, et al. Localized corrosion of thermally aged cast duplex stainless steel for primary coolant pipes of nuclear power plant [J]. Procedia Engineering, 2012, 36: 88
doi: 10.1016/j.proeng.2012.03.015
17 Chung H M. Aging and life prediction of cast duplex stainless steel components [J]. International Journal of Pressure Vessels and Piping, 1995, 50(1~3), 179
18 Pumphrey P H, Akhurst K N. Aging kinetics of CF3 cast stainless steel in temperature range 300~400℃ [J]. Materials Science and Technology, 1990, 6, 211
doi: 10.1179/mst.1990.6.3.211
19 Zhang Q, Singaravelu A S S, Zhao Y, et al. Mechanical properties of a thermally-aged cast duplex stainless steel by nanoindentation and micropillar compression [J]. Materials Science and Engineering: A, 2019, 743: 520
doi: 10.1016/j.msea.2018.11.112
20 Brandon D G. The structure of high-angle grain boundaries [J]. Acta Metall., 1966, 14(11): 1479
doi: 10.1016/0001-6160(66)90168-4
21 Wang J W, Chen Y B, Zhu Q, et al. Grain boundary dominated plasticity in metallic materials [J]. Acta Metall. Sin., 2022, 58: 726
王江伟, 陈映彬, 祝 祺 等. 金属材料的晶界塑性变形机制 [J]. 金属学报, 2022, 58: 726
doi: 10.11900/0412.1961.2021.00594
22 Wang M J, Ma Q, Li J L, et al. Influence of thermal aging on microstructure and mechanical properties of nuclear grade 316LN forged austenitic stainless steel [J]. J. Yanshan Univ., 2013, 37(05): 385
王明家, 马 千, 李景丽 等. 热老化对核级316LN锻造控氮奥氏体不锈钢微观组织及性能的影响 [J]. 燕山大学学报. 2013, 37(05):385
23 Cao X Y, Zhu P, Liu T G, et al. Thermal aging effects on mechanical and electrochemical properties of stainless steel weld overlay cladding [J]. Surf. Coat Tech., 2018, 344: 111
doi: 10.1016/j.surfcoat.2018.02.046
24 Altstadt E, Ge H E, Kuksenko V, et al. Critical evaluation of the small punch test as a screening procedure for mechanical properties [J]. J. Nucl. Mater., 2016, 472: 186
doi: 10.1016/j.jnucmat.2015.07.029
25 Zhu Q, Cao G, Wang J W, et al. In situ atomistic observation of disconnection-mediated grain boundary migration [J]. Nat. Commun., 2019, 10(1): 1
doi: 10.1038/s41467-018-07882-8
26 Zhu Q, Zhou H F, Chen Y B, et al. Atomistic dynamics of disconnection-mediated grain boundary plasticity: A case study of gold nanocrystals [J]. J. Mater. Sci. Technol., 2022, 125(1):182
doi: 10.1016/j.jmst.2022.02.040
27 Luo Q, Wang L, Liu S W, et al. Tendence of thermal aging embrittlement of weld of primary pipe made of 316LN stainless stell in nuclear power plant [J]. J. Iron Steel Res., 2015, 27: 4
罗 强, 王 理, 刘思维 等. 核电主管道用316LN不锈钢焊缝热老化脆化的趋势 [J]. 钢铁研究学报. 2015, 27: 4
28 Hong S H, Seo M G, Jang C H, et al. Evaluation of the effects of thermal aging of austenitic stainless steel welds using small punch test [J]. Procedia Eng., 2015, 130: 1010
doi: 10.1016/j.proeng.2015.12.253
29 Fujii T, Suzuki M, Shimamura Y. Susceptibility to intergranular corrosion in sensitized austenitic stainless steel characterized via crystallographic characteristics of grain boundaries [J]. Corros Sci., 2022, 195: 109946
doi: 10.1016/j.corsci.2021.109946
30 Liu T G, Xia S, Bai Q, et al. Three-dimensional study of grain boundary engineering effects on intergranular stress corrosion cracking of 316 stainless steel in high temperature water [J]. J. Nucl. Mater., 2018, 498: 290
doi: 10.1016/j.jnucmat.2017.10.004
31 Hong Y B, Kokawa H, Zhang J W, et al. Suppression of chromium depletion by grain boundary structural change during twin-induced grain boundary engineering of 304 stainless steel [J]. Scr. Mater., 2003(49): 219
32 Kokawa H, Watanabe T, Karashima S. Dissociation of lattice dislocations in coincidence boundaries [J]. J. Mater. Sci., 1983, 18(4):1183
doi: 10.1007/BF00551988
33 Kokawa H, Watanabe T, Karashima S. Structural changes during sliding of aluminium grain boundaries with different initial structures [J]. Scr. Metall., 1983, 17(10)
34 Watanabe T. An approach to grain boundary design for strong and ductile polycrystals [J]. Res Mech, 1984, 11: 47
35 Xia S, Zhou B X, Chen W J, Effect of deformation and heat-treatments on the grain boundary character distribution for 690 alloy [J]. Rare Met. Mater. Eng.. 2008, (06): 999
夏 爽, 周邦新, 陈文觉. 形变及热处理对690合金晶界特征分布的影响 [J]. 稀有金属材料与工程, 2008, (06): 999
36 Gao X, Wang M L, Liu T G, et al. Investigation on thermo-mechanical processing and intergranular corrosion of TP347H stainless steel [J]. Mater. Sci. Tech, 2021, 37: 909
doi: 10.1080/02670836.2021.1963917
37 Shi F, Tian P C, Jia N, et al. Improving intergranular corrosion resistance in a nickel-free and manganese-bearing high-nitrogen austenitic stainless steel through grain boundary character distribution optimization [J]. Corros Sci., 2016, 107: 49
doi: 10.1016/j.corsci.2016.02.019
38 Tokita S, Kokawa H, Kodama S, et al. Suppression of intergranular corrosion by surface grain boundary engineering of 304 austenitic stainless steel using laser peening plus annealing [J]. Mater. Today Commun., 2020, 25: 101572
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!