|
|
Effect of Thermal Aging on Mechanical Properties and Intergranular Corrosion Resistance of 316LN |
YANG Baolei1,2, LIU Tingguang2( ), SU Xianglin3, FAN Yu2, QIU Liang1, LU Yonghao2 |
1.Tianjin Heavy Equipment Engineering Research Co., Ltd., Tianjin 300450, China 2.National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China 3.Research Institute of Processing Technology, Inner Mongolia First Machinery Group Co., Ltd., North Industries Group Co., Ltd., Baotou 014030, China |
|
Cite this article:
YANG Baolei, LIU Tingguang, SU Xianglin, FAN Yu, QIU Liang, LU Yonghao. Effect of Thermal Aging on Mechanical Properties and Intergranular Corrosion Resistance of 316LN. Chinese Journal of Materials Research, 2023, 37(5): 381-390.
|
Abstract Nitrogen enhanced low carbon 316LN stainless steel, as a single-phase austenitic stainless steel, is selected as a candidate material of primary pipe for the third-generation pressurized water reactors. In the present work, the solution annealed 316LN was thermal aged at 400℃ for 400, 1000, 5000 and 10000 hours, respectively. The microstructures of the solution annealed and thermal aged steels were compared by optical microscope, scanning electron microscope (SEM), electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). The effect of thermal aging on mechanical properties of the steels was evaluated by using small punch test, nanoindentation and microhardness tester. The intergranular corrosion resistance of the steels was measured by using electrolytic etching in oxalic acid solution, and the effect of thermal aging on the corrosion resistance of various types of grain boundaries were characterized by using EBSD and atomic force microscope (AFM). The results show that thermal aging at 400℃ for 10000 h will not cause microstructural changes in the micron level of 316LN stainless steel. No change was observed in grain size, grain boundary morphology and characteristics of grain boundary distribution, and no new phase was formed during thermal aging. However, after thermal aging, the lattice parameter becomes smaller, which may be ascribed to that the interstitial atoms and dislocations originally dissolved in grains diffused and migrated towards the grain boundaries. This may result in changes of the mechanical properties of the 316LN, including the increase of strength and hardness, and the lower of plasticity and intergranular corrosion resistance. The intergranular corrosion susceptibilities of all types of grain boundaries increase with the extension of thermal aging time, but the susceptibility of coincidence site lattice (CSL) grain boundaries is always lower than that of random grain boundaries. Hence grain boundary engineering, which is a thermomechanical process and could produce high fraction of low-∑CSL grain boundaries in materials, could be applied to mitigate the intergranular corrosion of 316LN.
|
Received: 06 July 2022
|
|
Fund: National Key Research and Development Program of China(2019YFB1900905);Fundamental Research Funds for the Central Universities(FRF-TP-20-019A3) |
1 |
Shu G G, Lu N W. Aging problems and life evaluation for the key metallic components in PWR nuclear power plant [J]. Electr. Power, 2006(05): 53
|
|
束国刚, 陆念文. 压水堆核电厂关键金属部件的老化和寿命评估 [J]. 中国电力, 2006(05): 53
|
2 |
Wang X T, Li S L. Research status and development trend of nuclear power steel [J]. Adv. Mater. Ind., 2014(07): 2
|
|
王西涛, 李时磊. 核电用钢的研究现状及发展趋势 [J]. 新材料产业, 2014(07): 2
|
3 |
Fan Y, Liu T G, Xin L, et al. Thermal aging behaviors of duplex stainless steels used in nuclear power plant: A review [J]. J. Nucl. Mater., 2021, 544: 152693
doi: 10.1016/j.jnucmat.2020.152693
|
4 |
Li S, Wang Y, Wang X, et al. G-phase precipitation in duplex stainless steels after long-term thermal aging: A high-resolution transmission electron microscopy study [J]. J. Nucl. Mater., 2014, 452: 382
doi: 10.1016/j.jnucmat.2014.05.069
|
5 |
Schwarm S C, Mburu S, Kolli R P, et al. Effects of long-term thermal aging on bulk and local mechanical behavior of ferritic-austenitic duplex stainless steels [J]. Materials Science and Engineering: A, 2018, 720: 130
doi: 10.1016/j.msea.2018.02.058
|
6 |
Zhang H, Li S L, Liu G, et al. Effects of hot working on the microstructure and thermal ageing impact fracture behaviors of Z3CN20-09M duplex stainless steel [J]. Acta Metall. Sin., 2017, 53: 531
|
|
张 海, 李时磊, 刘 刚 等. 热加工对Z3CN20-09M双相不锈钢组织及热老化冲击断裂行为的影响 [J]. 金属学报, 2017, 53: 531
|
7 |
Yao Y H, Wei J F, Wang Z P. Effect of long-term thermal aging on the mechanical properties of casting duplex stainless steels [J]. Materials Science and Engineering: A, 2012, 551: 116
doi: 10.1016/j.msea.2012.04.105
|
8 |
Li S L, Wang Y L, Zhang H L, et al. Microstructure evolution and impact fracture behaviors of Z3CN20-09M stainless steels after long-term thermal aging [J]. J. Nucl. Mater., 2013, 433: 41
doi: 10.1016/j.jnucmat.2012.09.004
|
9 |
Guo C, Yu D, Sun X, et al. Fatigue failure mechanism and life prediction of a cast duplex stainless steel after thermal aging [J]. Int. J. Fatigue., 2021, 146: 106161
doi: 10.1016/j.ijfatigue.2021.106161
|
10 |
Xue F, Wang Z X, Shu G, et al. Thermal aging effect on Z3CN20.09M cast duplex stainless steel [J]. Nucl. Eng. Des., 2009, 239: 2217
doi: 10.1016/j.nucengdes.2009.06.009
|
11 |
Chen Y, Yang B, Zhou Y, et al. Evaluation of pitting corrosion in duplex stainless steel Fe20Cr9Ni for nuclear power application [J]. Acta Mater., 2020, 197: 172
doi: 10.1016/j.actamat.2020.07.046
|
12 |
Li S L, Wang Y L, Wang H, et al. Effects of long-term thermal aging on the stress corrosion cracking behavior of cast austenitic stainless steels in simulated PWR primary water [J]. J. Nucl. Mater., 2016, 469: 262
doi: 10.1016/j.jnucmat.2015.11.043
|
13 |
Cicero S, Setién J, Gorrochategui I. Assessment of thermal aging embrittlement in a cast stainless steel valve and its effect on the structural integrity [J]. Nucl. Eng. Des., 2009, 239: 16
doi: 10.1016/j.nucengdes.2008.09.009
|
14 |
Chandra K, Singhal R, Kain V, et al. Low temperature embrittlement of duplex stainless steel: Correlation between mechanical and electrochemical behavior [J]. Materials Science and Engineering: A, 2010, 527: 3904
doi: 10.1016/j.msea.2010.02.069
|
15 |
Wang M J, Chen L, Liu X C, et al. Influence of thermal aging on the SCC susceptibility of wrought 316LN stainless steel in a high temperature water environment [J]. Corros. Sci., 2014, 81: 117
doi: 10.1016/j.corsci.2013.12.011
|
16 |
Wang Y Q, Yang B, Han J, et al. Localized corrosion of thermally aged cast duplex stainless steel for primary coolant pipes of nuclear power plant [J]. Procedia Engineering, 2012, 36: 88
doi: 10.1016/j.proeng.2012.03.015
|
17 |
Chung H M. Aging and life prediction of cast duplex stainless steel components [J]. International Journal of Pressure Vessels and Piping, 1995, 50(1~3), 179
|
18 |
Pumphrey P H, Akhurst K N. Aging kinetics of CF3 cast stainless steel in temperature range 300~400℃ [J]. Materials Science and Technology, 1990, 6, 211
doi: 10.1179/mst.1990.6.3.211
|
19 |
Zhang Q, Singaravelu A S S, Zhao Y, et al. Mechanical properties of a thermally-aged cast duplex stainless steel by nanoindentation and micropillar compression [J]. Materials Science and Engineering: A, 2019, 743: 520
doi: 10.1016/j.msea.2018.11.112
|
20 |
Brandon D G. The structure of high-angle grain boundaries [J]. Acta Metall., 1966, 14(11): 1479
doi: 10.1016/0001-6160(66)90168-4
|
21 |
Wang J W, Chen Y B, Zhu Q, et al. Grain boundary dominated plasticity in metallic materials [J]. Acta Metall. Sin., 2022, 58: 726
|
|
王江伟, 陈映彬, 祝 祺 等. 金属材料的晶界塑性变形机制 [J]. 金属学报, 2022, 58: 726
doi: 10.11900/0412.1961.2021.00594
|
22 |
Wang M J, Ma Q, Li J L, et al. Influence of thermal aging on microstructure and mechanical properties of nuclear grade 316LN forged austenitic stainless steel [J]. J. Yanshan Univ., 2013, 37(05): 385
|
|
王明家, 马 千, 李景丽 等. 热老化对核级316LN锻造控氮奥氏体不锈钢微观组织及性能的影响 [J]. 燕山大学学报. 2013, 37(05):385
|
23 |
Cao X Y, Zhu P, Liu T G, et al. Thermal aging effects on mechanical and electrochemical properties of stainless steel weld overlay cladding [J]. Surf. Coat Tech., 2018, 344: 111
doi: 10.1016/j.surfcoat.2018.02.046
|
24 |
Altstadt E, Ge H E, Kuksenko V, et al. Critical evaluation of the small punch test as a screening procedure for mechanical properties [J]. J. Nucl. Mater., 2016, 472: 186
doi: 10.1016/j.jnucmat.2015.07.029
|
25 |
Zhu Q, Cao G, Wang J W, et al. In situ atomistic observation of disconnection-mediated grain boundary migration [J]. Nat. Commun., 2019, 10(1): 1
doi: 10.1038/s41467-018-07882-8
|
26 |
Zhu Q, Zhou H F, Chen Y B, et al. Atomistic dynamics of disconnection-mediated grain boundary plasticity: A case study of gold nanocrystals [J]. J. Mater. Sci. Technol., 2022, 125(1):182
doi: 10.1016/j.jmst.2022.02.040
|
27 |
Luo Q, Wang L, Liu S W, et al. Tendence of thermal aging embrittlement of weld of primary pipe made of 316LN stainless stell in nuclear power plant [J]. J. Iron Steel Res., 2015, 27: 4
|
|
罗 强, 王 理, 刘思维 等. 核电主管道用316LN不锈钢焊缝热老化脆化的趋势 [J]. 钢铁研究学报. 2015, 27: 4
|
28 |
Hong S H, Seo M G, Jang C H, et al. Evaluation of the effects of thermal aging of austenitic stainless steel welds using small punch test [J]. Procedia Eng., 2015, 130: 1010
doi: 10.1016/j.proeng.2015.12.253
|
29 |
Fujii T, Suzuki M, Shimamura Y. Susceptibility to intergranular corrosion in sensitized austenitic stainless steel characterized via crystallographic characteristics of grain boundaries [J]. Corros Sci., 2022, 195: 109946
doi: 10.1016/j.corsci.2021.109946
|
30 |
Liu T G, Xia S, Bai Q, et al. Three-dimensional study of grain boundary engineering effects on intergranular stress corrosion cracking of 316 stainless steel in high temperature water [J]. J. Nucl. Mater., 2018, 498: 290
doi: 10.1016/j.jnucmat.2017.10.004
|
31 |
Hong Y B, Kokawa H, Zhang J W, et al. Suppression of chromium depletion by grain boundary structural change during twin-induced grain boundary engineering of 304 stainless steel [J]. Scr. Mater., 2003(49): 219
|
32 |
Kokawa H, Watanabe T, Karashima S. Dissociation of lattice dislocations in coincidence boundaries [J]. J. Mater. Sci., 1983, 18(4):1183
doi: 10.1007/BF00551988
|
33 |
Kokawa H, Watanabe T, Karashima S. Structural changes during sliding of aluminium grain boundaries with different initial structures [J]. Scr. Metall., 1983, 17(10)
|
34 |
Watanabe T. An approach to grain boundary design for strong and ductile polycrystals [J]. Res Mech, 1984, 11: 47
|
35 |
Xia S, Zhou B X, Chen W J, Effect of deformation and heat-treatments on the grain boundary character distribution for 690 alloy [J]. Rare Met. Mater. Eng.. 2008, (06): 999
|
|
夏 爽, 周邦新, 陈文觉. 形变及热处理对690合金晶界特征分布的影响 [J]. 稀有金属材料与工程, 2008, (06): 999
|
36 |
Gao X, Wang M L, Liu T G, et al. Investigation on thermo-mechanical processing and intergranular corrosion of TP347H stainless steel [J]. Mater. Sci. Tech, 2021, 37: 909
doi: 10.1080/02670836.2021.1963917
|
37 |
Shi F, Tian P C, Jia N, et al. Improving intergranular corrosion resistance in a nickel-free and manganese-bearing high-nitrogen austenitic stainless steel through grain boundary character distribution optimization [J]. Corros Sci., 2016, 107: 49
doi: 10.1016/j.corsci.2016.02.019
|
38 |
Tokita S, Kokawa H, Kodama S, et al. Suppression of intergranular corrosion by surface grain boundary engineering of 304 austenitic stainless steel using laser peening plus annealing [J]. Mater. Today Commun., 2020, 25: 101572
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|