Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (3): 211-218    DOI: 10.11901/1005.3093.2021.679
ARTICLES Current Issue | Archive | Adv Search |
Dynamic Recrystallization and Microstructure Evolution Mechanism of GH4169 Alloy
YU Sen1, CHEN Leli1, LUO Rui1,3(), YUAN Zhizhong1, WANG Shuang1, GAO Pei1,3, CHENG Xiaonong1
1.School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
2.Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing 211167, China
3.Jiangsu Yinhuan Precision Steel Tube Co., Ltd., Yixing 214203, China
Cite this article: 

YU Sen, CHEN Leli, LUO Rui, YUAN Zhizhong, WANG Shuang, GAO Pei, CHENG Xiaonong. Dynamic Recrystallization and Microstructure Evolution Mechanism of GH4169 Alloy. Chinese Journal of Materials Research, 2023, 37(3): 211-218.

Download:  HTML  PDF(16221KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The dynamic recrystallization mechanism and microstructure evolution of superalloy GH4169 during isothermal compression by strain rate of 0.01~1 s-1 at temperature within the range of 1000~1150°C were systematically investigated via Gleeble thermal simulation technology, EBSD, SEM and OM. The results show that the maximum deformation resistance of the alloy can reach 400 MPa by the desired deformation parameters. The power dissipation diagram and rheological instability diagram of GH4169 were plotted based on the dynamic material model, and the deformation parameters of 1020°C~1070°C and 0.03~0.63 s-1, which were taken as the optimal processing interval for the GH4169 alloy. The evolution regularity of dynamic recrystallization during the deformation process of GH4169 was analysed. It is clear that the dynamic recrystallization is mainly initiated by the discontinuous dynamic recrystallization at grain boundaries of the original austenite, while the continuous dynamic recrystallization may be due to the nucleation induced through the continuous rotation of sub-grains. The evolution regularity of Σ3n non-coherent twin boundary was determined. The larger the volume fraction of dynamic recrystallization grains, the much smaller the size of grains and the higher the density of Σ3 non-coherent twin boundaries. The growth of dynamic recrystallization grains takes the precedence over the formation of Σ3n non-coherent twin boundary.

Key words:  metallic materials      superalloy GH4169      thermal deformation      dynamic recrystallization      Σ3n non-coherent twin boundary     
Received:  07 December 2021     
ZTFLH:  TG132.3+2  
Fund: Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology(ASMA202002);China Postdoctoral Science Foundation(2019M661738)
Corresponding Authors:  LUO Rui, Tel: 18796000354, E-mail: luoruiweiyi@163. com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.679     OR     https://www.cjmr.org/EN/Y2023/V37/I3/211

ElementsNiFeCrNbTiAlMo
Mass fraction, %53.2020.2517.593.340.880.562.81
Table 1  Main chemical composition of GH4169 alloy
Fig.1  Original structure OM of GH4169 alloy
Fig.2  True stress-true strain curve of GH4169 alloy under different thermal deformation parameters
Fig.3  Power dissipation diagram (a) and Rheological instability plot (b) for GH4169 alloy at ε=0.7
Fig.4  Microstructure of GH4169 alloy under different thermal deformation conditions OM (a) 1000℃-0.1 s-1; (b) 1050℃-0.1 s-1; (c) 1100℃-0.1 s-1; (d) 1150℃-0.1 s-1; (e) 1100℃-0.01 s-1 and (f) 1050℃-1 s-1
Fig.5  EBSD microstructure diagram under different thermal deformation parameters of GH4169 alloy (a) 1000℃-0.1 s-1; (b) 1050℃-1 s-1; (c) 1050-0.1 s-1; (d) 1100℃-0.01 s-1; (e) the distribution map of texture component within 10° of the <111> direction under 1000℃-0.1 s-1 parameter and (f) IPF legend
Fig.6  Under 1000℃-0.1 s-1 thermal processing parameters IPF map of selected area 1 (a); IPF map of extracted grains (b); PF map of selected areas A and B (c); A, B Poor crystallographic orientation of the selected area (d) and schematic diagram of the DDRX mechanism (e) for GH4169 alloy
Fig.7  GH4169 under the thermal processing parameters of 1000℃-0.1 s-1 the IPF map of the selection area 1 (a); the GND diagram of the selection area 1 (b); 1100℃-0.01 s-1 thermal processing parameters of the selection area 2 IPF diagram (c); KAM diagram of selection area 2 (d); Schematic diagram of CDRX mechanism (e) and GB diagram under thermal processing parameters of 1100℃-0.01 s-1 (f)
Fig. 8  Σ3n grain boundary under different thermal deformation parameters of GH4169 (a) 1000℃-0.1 s-1; (b) 1050℃-1 s-1; (c) 1050-0.1 s-1; (d) 1100℃-0.01 s-1; (e) 1050℃-1 s-1 selection area (f) Σ3n grain boundary density under various deformation parameters
1 Zhang G Q, Zhang R W, Yang Y R. The microstructure of two premium quality GH4169 superalloy and its effect on stress-rupture properties [J]. J. Mater. Eng., 1991(06): 13
张国庆, 张荣武, 杨玉荣. 两种优质GH4169合金的显微组织及其对持久性能的影响 [J]. 材料工程, 1991(06): 13
2 Liu F, Sun W R, Yang S L. Effect of Al on impact properties of GH4169 alloy [J]. Chin. J. Mater. Res., 2008(03): 230
刘 芳, 孙文儒, 杨树林. A1对GH4169合金冲击性能的影响 [J]. 材料研究学报, 2008(03): 230
3 Chen X M, Lin Y C, Chen M S. Microstructural evolution of a nickel-based superalloy during hot deformation [J]. Mater. Des., 2015, 77: 41
doi: 10.1016/j.matdes.2015.04.004
4 Guan Y S, Liu E Z, Guan X R, Zheng Z. Influence of Ru on solidification behavior,microstructure and hardness of Re-free Ni-based equiaxed superalloys with high Cr content [J]. J. Mater. Sci. Technol., 2016, 32(3): 272
5 Yu R L, Xu X, Wang C S. Effect of GH4169 alloy microstructure on properties [J]. J. Aeronaut. Mater., 1998(02): 25
于荣莉, 徐 晓, 王春生. GH4169合金组织结构对性能的影响 [J]. 航空制造工程, 1998(02): 25
6 Pradhan S K, Mandal S, Athreya C N. Influence of processing parameters on dynamic recrystallization and the associated annealing twin boundary evolution in a nickel base superalloy [J]. Mater. Sci. Eng. A, 2017(700): 49
7 Lin Y C, He D G, Chen J, et al. Microstructural evolution and support vector regression model for an aged Ni-based superalloy during two-stage hot forming with stepped strain rates [J]. Mater. Des., 2018(154): 51
8 Yang K, Zhu Z C, Zhang X J. Hot deformation and dynamic recrystallization behavior of nickel-based alloy 617 [J]. T. Mater. Heat. Treat., 2019, 40(10): 151
杨 康, 祝志超, 张雪姣. 镍基617合金的热变形和动态再结晶行为 [J]. 材料热处理学报, 2019, 40(10): 151
9 Prasad Y. V. R. K. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metall. Mater. Trans. A, 1984, 15(10): 1883
doi: 10.1007/BF02664902
10 Huang Y L, Wang J B, Ling X S. Research development of hot processing map theory [J]. Mater. Rev., 2008, 22(S3): 173
黄有林, 王建波, 凌学士. 热加工图理论的研究进展 [J]. 材料导报, 2008, 22(S3): 173
11 Wang L, Liu F, Cheng J J. Hot deformation characteristics and processing map analysis for Nickel-based corrosion resistant alloy [J]. J. Alloys Compd., 2015, 623: 69
doi: 10.1016/j.jallcom.2014.10.034
12 Liu Y C, Zhang H J, Guo Q Y. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency [J]. Acta. Metall. Sin., 2018, 54(11): 1653
doi: 10.11900/0412.1961.2018.00340
刘永长, 张宏军, 郭倩颖. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54(11): 1653
doi: 10.11900/0412.1961.2018.00340
13 Luo R, Chen L L, Cheng X N. Thermal deformation and dynamic recrystallization behavior of Inconel 617B superalloy [J]. J. Press. Vessel. Technol., 2020, 37(10): 7
罗 锐, 陈乐利, 程晓农. 高温合金Inconel 617B的热变形及动态再结晶行为 [J]. 压力容器, 2020, 37(10): 7
14 Wang W. Hot deformation behavior and recrystallization model of GH4169 nickel base superalloy [J]. Mater. Mech. Eng., 2020, 44(09): 87
王 稳. GH4169镍基高温合金的热变形行为与再结晶模型 [J]. 机械工程材料, 2020, 44(09): 87
15 Shi W, Wang Y, Shao W Z. Processing map of GH4169 alloy during hot plastic deformation [J]. Mater. Sci. Eng. Powder Metall., 2012, 17(03): 281
时 伟, 王 岩, 邵文柱. GH4169合金高温塑性变形的热加工图 [J]. 粉末冶金材料科学与工程, 2012, 17(03): 281
16 Wang M J. Study on the hot workability of Inconel 740 superalloy and its application in hot extrusion process [D]. Beijing: University of Science and Technology Beijing, 2021
王明佳. Inconel 740合金热加工性能研究及在热挤压工艺中的应用 [D]. 北京: 北京科技大学, 2021
17 Davies P, Randle V. literature review grain boundary engineering and the role of the interfacial plane [J]. Mater. Sci. Technol., 2001, 17(6): 346
18 Randle V. Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials [J]. Acta Mater., 1999(47): 4187
19 Zhang H B. Hot deformation behavior and microstructure evolution of GH99 superalloy [D]. Harbin: Harbin Institute of Technology, 2015
张弘斌. GH99高温合金高温变形行为及组织演化规律研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015
20 Bai B Z, Yang L Y, Zhao Y F. Exploration of process "isothermal forging+direct aging" for GH4169 alloy [J]. Chin. J. Rare Met., 2002(01): 7
白秉哲, 杨鲁义, 赵耀峰. GH4169合金"等温锻造+直接时效"工艺探讨 [J]. 稀有金属, 2002(01): 7
21 Yu Y N. Principles of Metallography[M]. Beijing: Metallurgical Industry Press, 2020
余永宁. 金属学原理 [M]. 北京: 冶金工业出版社, 2020
22 Momeni A, Dehghani K. Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps [J]. Mater. Sci. Eng. A, 2010, 527(21-22): 5467
doi: 10.1016/j.msea.2010.05.079
23 Hans Z. An introduction to thermo mechanics [J]. J. Appl. Mech., 1977, 45(4): 996
24 Nie Y H, Bai Y G, Li H M. Effect of heating temperature and holding time on grain size of GH4169 alloy [J]. Heavy Castings and Forgings, 2021(03): 37
聂义宏, 白亚冠, 李红梅. 加热温度与保温时间对GH4169合金晶粒度的影响规律研究 [J]. 大型铸锻件, 2021(03): 37
25 Viswanathan G B, Karthikeyan S, Sarosi P M. Microtwinning during intermediate temperature creep of polycrystalline Ni-based superalloys: mechanisms and modelling [J]. Philos. Mag., 2006, 86(29-31): 4823
doi: 10.1080/14786430600767750
26 Knowles D M, Chen Q Z. Superlattice stacking fault formation and twinning during creep in γ/γ′ single crystal superalloy CMSX-4 [J]. Mater. Sci. Eng. A, 2003, 340: 88
doi: 10.1016/S0921-5093(02)00172-7
27 Randle V. Twinning-related grain boundary engineering [J]. Acta Mater., 2004, 52(14): 4067
doi: 10.1016/j.actamat.2004.05.031
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!