|
|
High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite |
ZHOU Cong1,2, ZAN Yuning1,3( ), WANG Dong1, WANG Quanzhao1,3, XIAO Bolv1, MA Zongyi1,3 |
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite. Chinese Journal of Materials Research, 2023, 37(2): 81-88.
|
Abstract A (Al11La3+Al2O3)/Al composite was prepared by powder metallurgy process through the in-situ reaction of Al-La2O3. It was found that the high energy ball milling can promote the in-situ reaction and facilitate high-temperature sintering, thus a sufficient in-situ reaction between Al and La2O3 was achieved, and a dense and defect-free material was obtained. The microstructure analysis showed that micro-Al11La3 and nano-Al2O3 particles were uniformly dispersed in the matrix. The room-temperature tensile strength of the composite reached 328 MPa, the elongation was 10.5%, the tensile strength at 350℃ reached 119 MPa, and the elongation was 10.2%. Compared with the traditional Al-Cu-Mg-Ag and Al-Si-Cu-Mg heat-resistant aluminum alloys, the high-temperature tensile strength of the (Al11La3+Al2O3)/Al composite was enhanced by about 20%. The strengthening effect at room temperature may come mainly from the dislocation strengthening and load-transfer strengthening effect of Al11La3 and Al2O3, while the strengthening effect at high temperature may be ascribed to the grain boundary pinning effect of Al2O3.
|
Received: 21 March 2022
|
|
Fund: CNNC Science Fund for Talented Young Scholars;National Natural Science Foundation of China(52171056);IMR Innovation Fund(2021-ZD02);Liaoning Revitalization Talents Program(XLYC1902058) |
About author: ZAN Yuning, Tel: (024)23971752, E-mail: ynzan15b@imr.ac.cn
|
1 |
Chak V, Chattopadhyay H, Dora T L. A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites [J]. J. Manuf. Process., 2020, 56: 1059
doi: 10.1016/j.jmapro.2020.05.042
|
2 |
Mavhungu S T, Akinlabi E T, Onitiri M A, et al. Aluminum matrix composites for industrial use: advances and trends [J]. Procedia Manufacturing, 2017, 7: 178
doi: 10.1016/j.promfg.2016.12.045
|
3 |
Hu H E, Zhen L, Yang L, et al. Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation [J]. Mater. Sci. Eng. A, 2008, 488(1-2): 64
doi: 10.1016/j.msea.2007.10.051
|
4 |
Guo X, Tao L, Zhu S, et al. Experimental Investigation of Mechanical Properties of Aluminum Alloy at High and Low Temperatures [J]. J. Mater. Civ. Eng., 2020, 32(2): 06019016
|
5 |
Jeong C Y. High temperature mechanical properties of Al-Si-Mg-(Cu) alloys for automotive cylinder heads [J]. Mater. Trans., 2013, 54(4): 588
doi: 10.2320/matertrans.M2012285
|
6 |
Mohamed A M A, Samuel F H, Kahtani S A. Microstructure, tensile properties and fracture behavior of high temperature Al-Si-Mg-Cu cast alloys [J]. Mater. Sci. Eng. A, 2013, 577: 64
doi: 10.1016/j.msea.2013.03.084
|
7 |
Skinner D J, Bye R L, Raybould D, et al. Dispersion strengthened Al-Fe-V-Si alloys [J]. Scripta Metallurgica, 1986, 20(6): 867
doi: 10.1016/0036-9748(86)90456-4
|
8 |
Barmouz M, Besharati Givi M K, Seyfi J. On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior [J]. Mater. Charact., 2011, 62(1): 108
doi: 10.1016/j.matchar.2010.11.005
|
9 |
Zan Y N, Zhang Q, Zhou Y T, et al. Enhancing high-temperature strength of B4C-6061Al neutron absorber material by in-situ Mg(Al)B2 [J]. J. Nucl. Mater., 2019, 526: 151788
doi: 10.1016/j.jnucmat.2019.151788
|
10 |
Jiang L, Li Z, Fan G, et al. Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes [J]. Scr. Mater., 2012, 66(6): 331
doi: 10.1016/j.scriptamat.2011.11.023
|
11 |
Li M, Gao H, LianG J, et al. Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites [J]. Mater. Charact., 2018, 140: 172
doi: 10.1016/j.matchar.2018.04.007
|
12 |
Wang H, Li G, Zhao Y, et al. In situ fabrication and microstructure of Al2O3 particles reinforced aluminum matrix composites [J]. Mater. Sci. Eng. A, 2010, 527(12): 2881
doi: 10.1016/j.msea.2010.01.022
|
13 |
Zhu H, Min J, Li J, et al. In situ fabrication of (α-Al2O3+Al3Zr)/Al composites in an Al-ZrO2 system [J]. Compos. Sci. Technol., 2010, 70(15): 2183
doi: 10.1016/j.compscitech.2010.08.021
|
14 |
Feng C F, Froyen L. Formation of Al3Ti and Al2O3 from an Al-TiO2 system for preparing in-situ aluminium matrix composites [J]. Compos. Pt. A-Appl. Sci. Manuf., 2000, 31(4): 385
doi: 10.1016/S1359-835X(99)00041-X
|
15 |
Rong X, Zhao D, He C, et al. Revealing the strengthening and toughening mechanisms of Al-CuO composite fabricated via in-situ solid-state reaction [J]. Acta Mater., 2021, 204: 116524
doi: 10.1016/j.actamat.2020.116524
|
16 |
Anthony A I, Suzuki A, Kamado S, et al. Optimization of Mg-Zn-Al-Ca-La Alloys for the Improvement of Casting Properties and Creep Resistance [J]. Materials Science Forum, 2005, 488-489: 805
doi: 10.4028/www.scientific.net/MSF.488-489.805
|
17 |
Colombo M, Gariboldi E, Morri A. Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al-7Si-0.4Mg alloy modified with 0.25%Er [J]. Mater. Sci. Eng. A, 2018, 713: 151
doi: 10.1016/j.msea.2017.12.068
|
18 |
Khomamizadeh F, Nami B, Khoshkhooei S. Effect of rare-earth element additions on high-temperature mechanical properties of AZ91 magnesium alloy [J]. Metall. Mater. Trans. A, 2005, 36(12): 3489
doi: 10.1007/s11661-005-0022-6
|
19 |
Chen C F, Kao P W, Chang L, et al. Mechanical properties of nanometric Al2O3 particulate-reinforced Al-Al11Ce3 composites produced by friction stir processing [J]. Mater. Trans., 2010, 51(5): 933
doi: 10.2320/matertrans.M2009406
|
20 |
Sakamoto T, Kukeya S, Ohfuji H. Microstructure and room and high temperature mechanical properties of ultrafine structured Al-5%Y2O3 and Al-5%La2O3 nanocomposites fabricated by mechanical alloying and hot pressing [J]. Metall. Mater. Trans. A, 2019, 748: 428
|
21 |
Choi H J, Shin J H, Bae D H. The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites [J]. Compos. Pt. A-Appl. Sci. Manuf., 2012, 43(7): 1061
doi: 10.1016/j.compositesa.2012.02.008
|
22 |
Chao Z L, Zhang L C, Jiang L T, et al. Design, microstructure and high temperature properties of in-situ Al3Ti and nano-Al2O3 reinforced 2024Al matrix composites from Al-TiO2 system [J]. J. Alloy. Compd., 2019, 775: 290
doi: 10.1016/j.jallcom.2018.09.376
|
23 |
Zuo L, Ye B, Feng J, et al. Effect of Q-Al5Cu2Mg8Si6 phase on mechanical properties of Al-Si-Cu-Mg alloy at elevated temperature [J]. Mater. Sci. Eng. A, 2017, 693: 26
doi: 10.1016/j.msea.2017.03.087
|
24 |
Xiao D H, Wang J N, Ding D Y, et al. Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy [J]. J. Alloy. Compd., 2003, 352(1-2): 84
doi: 10.1016/S0925-8388(02)01162-3
|
25 |
Zan Y N, Zhou Y T, Zhao H, et al. Enhancing high-temperature strength of (B4C+Al2O3)/Al designed for neutron absorbing materials by constructing lamellar structure [J]. Compos. Pt. B-Eng., 2020, 183: 107674
doi: 10.1016/j.compositesb.2019.107674
|
26 |
Hansen N. Hall-Petch relation and boundary strengthening [J]. Scr. Mater., 2004, 51(8): 801
doi: 10.1016/j.scriptamat.2004.06.002
|
27 |
Ma K, Wen H, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater., 2014, 62: 141
doi: 10.1016/j.actamat.2013.09.042
|
28 |
Nardone V C, Prewo K M. On the strength of discontinuous silicon carbide reinforced aluminum composites [J]. Scripta Metallurgica, 1986, 20(1): 43
doi: 10.1016/0036-9748(86)90210-3
|
29 |
Zhang Z, Chen D. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength [J]. Scr. Mater., 2006, 54(7): 1321
doi: 10.1016/j.scriptamat.2005.12.017
|
30 |
Zan Y N, Zhou Y T, Liu Z Y, et al. Microstructure and mechanical properties of (B4C+Al2O3)/Al composites designed for neutron absorbing materials with both structural and functional usages [J]. Mater. Sci. Eng. A, 2020, 773: 138840
doi: 10.1016/j.msea.2019.138840
|
31 |
Poletti C, Balog M, Simancik F, et al. High-temperature strength of compacted sub-micrometer aluminium powder [J]. Acta Mater., 2010, 58(10): 3781
doi: 10.1016/j.actamat.2010.03.021
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|