Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (2): 81-88    DOI: 10.11901/1005.3093.2022.157
ARTICLES Current Issue | Archive | Adv Search |
High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite
ZHOU Cong1,2, ZAN Yuning1,3(), WANG Dong1, WANG Quanzhao1,3, XIAO Bolv1, MA Zongyi1,3
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite. Chinese Journal of Materials Research, 2023, 37(2): 81-88.

Download:  HTML  PDF(13067KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A (Al11La3+Al2O3)/Al composite was prepared by powder metallurgy process through the in-situ reaction of Al-La2O3. It was found that the high energy ball milling can promote the in-situ reaction and facilitate high-temperature sintering, thus a sufficient in-situ reaction between Al and La2O3 was achieved, and a dense and defect-free material was obtained. The microstructure analysis showed that micro-Al11La3 and nano-Al2O3 particles were uniformly dispersed in the matrix. The room-temperature tensile strength of the composite reached 328 MPa, the elongation was 10.5%, the tensile strength at 350℃ reached 119 MPa, and the elongation was 10.2%. Compared with the traditional Al-Cu-Mg-Ag and Al-Si-Cu-Mg heat-resistant aluminum alloys, the high-temperature tensile strength of the (Al11La3+Al2O3)/Al composite was enhanced by about 20%. The strengthening effect at room temperature may come mainly from the dislocation strengthening and load-transfer strengthening effect of Al11La3 and Al2O3, while the strengthening effect at high temperature may be ascribed to the grain boundary pinning effect of Al2O3.

Key words:  composite      high energy ball milling      microstructure      mechanical properties     
Received:  21 March 2022     
ZTFLH:  TG146.2  
Fund: CNNC Science Fund for Talented Young Scholars;National Natural Science Foundation of China(52171056);IMR Innovation Fund(2021-ZD02);Liaoning Revitalization Talents Program(XLYC1902058)
About author:  ZAN Yuning, Tel: (024)23971752, E-mail: ynzan15b@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.157     OR     https://www.cjmr.org/EN/Y2023/V37/I2/81

Fig.1  Morphologies of pure Al powders (a), La2O3 particles (b), and mixed powders after HEBM (c)
Fig.2  XRD patterns of mixed powders after HEBM (a) and composite (b)
Fig.3  SEM images of composite with low (a, b) and high magnifications (c), EDS mapping (d, e) of the same position of (b), and EDS result of position A (f)
Fig.4  TEM images of composite (a) macrostructure and Al11La3 in the matrix, (b) a selected area diffraction pattern of A-phase, (c) (d) (e) EDS mapping of the same position of (a), (f) HRTEM image of Al2O3 with its FFT in the inset, and (g) grain size
Fig.5  STEM-BF image of Al matrix (a), and EDS mapping (b, c) of the same position of (a)
Fig.6  Tensile stress-strain curves of composite and Al matrix at RT (a) and 350℃ (b)
SampleRT350℃
YS/MPaUTS/MPaEL/%YS/MPaUTS/MPaEL/%
Composite292±4328±310.5±0.9113±5119±410.2±2.2
Al matrix208±8252±318.5±1.099±6100±415.2±2.0
Table 1  Tensile properties of composite and Al matrix
/MPaσymAl2O3Al11La3
σL-T/MPa

σOro

/MPa

σGND

/MPa

σL-T/MPa

σOro

/MPa

σGND

/MPa

10619264011
Table 2  Calculation of yield strength of the composite and Al matrix
Fig.7  SEM fractographs at RT (a, b) and 350℃ (c, d) for composites
1 Chak V, Chattopadhyay H, Dora T L. A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites [J]. J. Manuf. Process., 2020, 56: 1059
doi: 10.1016/j.jmapro.2020.05.042
2 Mavhungu S T, Akinlabi E T, Onitiri M A, et al. Aluminum matrix composites for industrial use: advances and trends [J]. Procedia Manufacturing, 2017, 7: 178
doi: 10.1016/j.promfg.2016.12.045
3 Hu H E, Zhen L, Yang L, et al. Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation [J]. Mater. Sci. Eng. A, 2008, 488(1-2): 64
doi: 10.1016/j.msea.2007.10.051
4 Guo X, Tao L, Zhu S, et al. Experimental Investigation of Mechanical Properties of Aluminum Alloy at High and Low Temperatures [J]. J. Mater. Civ. Eng., 2020, 32(2): 06019016
5 Jeong C Y. High temperature mechanical properties of Al-Si-Mg-(Cu) alloys for automotive cylinder heads [J]. Mater. Trans., 2013, 54(4): 588
doi: 10.2320/matertrans.M2012285
6 Mohamed A M A, Samuel F H, Kahtani S A. Microstructure, tensile properties and fracture behavior of high temperature Al-Si-Mg-Cu cast alloys [J]. Mater. Sci. Eng. A, 2013, 577: 64
doi: 10.1016/j.msea.2013.03.084
7 Skinner D J, Bye R L, Raybould D, et al. Dispersion strengthened Al-Fe-V-Si alloys [J]. Scripta Metallurgica, 1986, 20(6): 867
doi: 10.1016/0036-9748(86)90456-4
8 Barmouz M, Besharati Givi M K, Seyfi J. On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior [J]. Mater. Charact., 2011, 62(1): 108
doi: 10.1016/j.matchar.2010.11.005
9 Zan Y N, Zhang Q, Zhou Y T, et al. Enhancing high-temperature strength of B4C-6061Al neutron absorber material by in-situ Mg(Al)B2 [J]. J. Nucl. Mater., 2019, 526: 151788
doi: 10.1016/j.jnucmat.2019.151788
10 Jiang L, Li Z, Fan G, et al. Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes [J]. Scr. Mater., 2012, 66(6): 331
doi: 10.1016/j.scriptamat.2011.11.023
11 Li M, Gao H, LianG J, et al. Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites [J]. Mater. Charact., 2018, 140: 172
doi: 10.1016/j.matchar.2018.04.007
12 Wang H, Li G, Zhao Y, et al. In situ fabrication and microstructure of Al2O3 particles reinforced aluminum matrix composites [J]. Mater. Sci. Eng. A, 2010, 527(12): 2881
doi: 10.1016/j.msea.2010.01.022
13 Zhu H, Min J, Li J, et al. In situ fabrication of (α-Al2O3+Al3Zr)/Al composites in an Al-ZrO2 system [J]. Compos. Sci. Technol., 2010, 70(15): 2183
doi: 10.1016/j.compscitech.2010.08.021
14 Feng C F, Froyen L. Formation of Al3Ti and Al2O3 from an Al-TiO2 system for preparing in-situ aluminium matrix composites [J]. Compos. Pt. A-Appl. Sci. Manuf., 2000, 31(4): 385
doi: 10.1016/S1359-835X(99)00041-X
15 Rong X, Zhao D, He C, et al. Revealing the strengthening and toughening mechanisms of Al-CuO composite fabricated via in-situ solid-state reaction [J]. Acta Mater., 2021, 204: 116524
doi: 10.1016/j.actamat.2020.116524
16 Anthony A I, Suzuki A, Kamado S, et al. Optimization of Mg-Zn-Al-Ca-La Alloys for the Improvement of Casting Properties and Creep Resistance [J]. Materials Science Forum, 2005, 488-489: 805
doi: 10.4028/www.scientific.net/MSF.488-489.805
17 Colombo M, Gariboldi E, Morri A. Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al-7Si-0.4Mg alloy modified with 0.25%Er [J]. Mater. Sci. Eng. A, 2018, 713: 151
doi: 10.1016/j.msea.2017.12.068
18 Khomamizadeh F, Nami B, Khoshkhooei S. Effect of rare-earth element additions on high-temperature mechanical properties of AZ91 magnesium alloy [J]. Metall. Mater. Trans. A, 2005, 36(12): 3489
doi: 10.1007/s11661-005-0022-6
19 Chen C F, Kao P W, Chang L, et al. Mechanical properties of nanometric Al2O3 particulate-reinforced Al-Al11Ce3 composites produced by friction stir processing [J]. Mater. Trans., 2010, 51(5): 933
doi: 10.2320/matertrans.M2009406
20 Sakamoto T, Kukeya S, Ohfuji H. Microstructure and room and high temperature mechanical properties of ultrafine structured Al-5%Y2O3 and Al-5%La2O3 nanocomposites fabricated by mechanical alloying and hot pressing [J]. Metall. Mater. Trans. A, 2019, 748: 428
21 Choi H J, Shin J H, Bae D H. The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites [J]. Compos. Pt. A-Appl. Sci. Manuf., 2012, 43(7): 1061
doi: 10.1016/j.compositesa.2012.02.008
22 Chao Z L, Zhang L C, Jiang L T, et al. Design, microstructure and high temperature properties of in-situ Al3Ti and nano-Al2O3 reinforced 2024Al matrix composites from Al-TiO2 system [J]. J. Alloy. Compd., 2019, 775: 290
doi: 10.1016/j.jallcom.2018.09.376
23 Zuo L, Ye B, Feng J, et al. Effect of Q-Al5Cu2Mg8Si6 phase on mechanical properties of Al-Si-Cu-Mg alloy at elevated temperature [J]. Mater. Sci. Eng. A, 2017, 693: 26
doi: 10.1016/j.msea.2017.03.087
24 Xiao D H, Wang J N, Ding D Y, et al. Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy [J]. J. Alloy. Compd., 2003, 352(1-2): 84
doi: 10.1016/S0925-8388(02)01162-3
25 Zan Y N, Zhou Y T, Zhao H, et al. Enhancing high-temperature strength of (B4C+Al2O3)/Al designed for neutron absorbing materials by constructing lamellar structure [J]. Compos. Pt. B-Eng., 2020, 183: 107674
doi: 10.1016/j.compositesb.2019.107674
26 Hansen N. Hall-Petch relation and boundary strengthening [J]. Scr. Mater., 2004, 51(8): 801
doi: 10.1016/j.scriptamat.2004.06.002
27 Ma K, Wen H, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater., 2014, 62: 141
doi: 10.1016/j.actamat.2013.09.042
28 Nardone V C, Prewo K M. On the strength of discontinuous silicon carbide reinforced aluminum composites [J]. Scripta Metallurgica, 1986, 20(1): 43
doi: 10.1016/0036-9748(86)90210-3
29 Zhang Z, Chen D. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength [J]. Scr. Mater., 2006, 54(7): 1321
doi: 10.1016/j.scriptamat.2005.12.017
30 Zan Y N, Zhou Y T, Liu Z Y, et al. Microstructure and mechanical properties of (B4C+Al2O3)/Al composites designed for neutron absorbing materials with both structural and functional usages [J]. Mater. Sci. Eng. A, 2020, 773: 138840
doi: 10.1016/j.msea.2019.138840
31 Poletti C, Balog M, Simancik F, et al. High-temperature strength of compacted sub-micrometer aluminium powder [J]. Acta Mater., 2010, 58(10): 3781
doi: 10.1016/j.actamat.2010.03.021
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[5] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[8] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[9] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[10] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[11] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[12] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[13] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[14] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[15] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
No Suggested Reading articles found!