Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (2): 136-144    DOI: 10.11901/1005.3093.2021.535
ARTICLES Current Issue | Archive | Adv Search |
Effect of Chromium Quality on Inclusions in GH4169 Ingot
FENG Hanxu1,2, ZHAO Lianxiang3, LIU Enze1(), TAN Zheng1, NING Likui1, TONG Jian1, ZHENG Zhi1, LI Haiying1, LIU Kai4
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Military Representative Office of the Army Equipment Department in Shenyang, Shenyang 110004, China
4.Maiite (Dalian) Auto Parts Co. Ltd., Dalian 116000, China
Cite this article: 

FENG Hanxu, ZHAO Lianxiang, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying, LIU Kai. Effect of Chromium Quality on Inclusions in GH4169 Ingot. Chinese Journal of Materials Research, 2023, 37(2): 136-144.

Download:  HTML  PDF(16494KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three kinds of GH4169 alloy ingot were made via vacuum induction melt-casting method with metal block chromium of different quality (i.e. high purity chromium, common chromium and micro-carbon ferrochrome) as raw materials. The characteristics of inclusions in superalloy ingots were investigated by optical microscope (OM) and scanning electron microscope (SEM), and their formation mechanism are analyzed by JMatPro software. It is found that the content of N, P, S and Mn in the ingots decreases with the increase of chromium purity. The types of inclusions in the ingots change to single oxides from oxides, carbonitrides and composite inclusions. The content of carbonitrides and composite inclusions gradually decreases with increasing chromium purity.

Key words:  metallic materials      GH4169      chromium      impurity element      inclusion      JMatPro software     
Received:  16 September 2021     
ZTFLH:  TF133  
Fund: Liaoning Province Science and Technology Tackling Plan(2019JH2/10100009)
About author:  LIU Enze, Tel: (024)23971143, E-mail: nzliu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.535     OR     https://www.cjmr.org/EN/Y2023/V37/I2/136

Sample No.CAlTiMoNbCrNiFe
1#0.0340.631.002.985.2018.1752.2Bal.
2#0.0310.751.003.005.2718.3551.8Bal.
3#0.0350.680.983.015.2918.2251.6Bal.
Table 1  Actual chemical composition of GH4169 ingot by vacuum induction melting (mass fraction, %)
Fig.1  Macro microstructure and location of sample in GH4169 ingot (a) 1#,(b) 2#,(c) 3#
ONPSSiMn
Purity Cr0.0320.001≤0.0020.00090.054-
Ordinary Cr0.0980.010≤0.0020.00210.052-
Micro-carbon ferrochrome--0.0210.0151.07-
Table 2  Impurity element contents in Cr (mass fraction, %)
Sample No.ONPSSiMn
1#0.00180.00090.0020.00090.0270.016
2#0.00110.00350.0020.00090.0130.015
3#0.00130.00950.0050.00190.4000.100
Table 3  Impurity element contents in GH4169 ingots (volume fraction, %)
Inclusion typeAverage size/μm
Oxide(Al, Mg)O1.11±0.047
(Al, Ca)O
(Al,Mg,Ca)O
Nitride(Ti,Nb)(C,N)1.00±0.046
Mixed(Al,Mg)O-(Ti,Nb)(C,N)1.83±0.134
(Al,Mg,Ca)O-(Ti,Nb)(C,N)
Table 4  Type and average size of inclusions in GH4169 ingot
Fig.2  Morphology and composition of monolayer inclusions in GH4169 ingot
Fig.3  Morphology and element scanning of composite inclusions in GH4169 ingot (a) (Al, Mg) O - (Ti, Nb) (C, N), (b) (Al, Mg, Ca) O - (Ti, Nb) (C, N)
Fig.4  Aggregation of inclusions in GH4169 (a) 1#, (b) 2#, (c) 3#
Fig.5  Content of top, middle and bottom inclusions in GH4169 ingot
Fig.6  Content of various types of inclusions in GH4169 ingot
Fig.7  Number density of inclusions in GH4169 ingot
Fig.8  JMatPro simulates and calculates the changes of various elements in inclusions (a) M2O3, (b) MN
Fig.9  The influence of the elements Al and O on the precipitation content of M2O3 inclusions (a) Al content change, (b) O content change
Fig.10  Influence of the elements Ti and N on the precipitation content of MN inclusions (a) Ti content change, (b) N content change
Fig.11  Schematic illustration of the reaction between CaO crucible and alloy liquid and the formation of oxide inclusions
1 Kirka M M, Unocic K A, Raghavan N, et al. Microstructure development in electron beam-melted Inconel 718 and associated tensile properties [J]. JOM, 2016, 68(3): 1012
doi: 10.1007/s11837-016-1812-6
2 Zhang Y, Li X X, Wei K, et al. Element segregation in GH4169 superalloy large-scale ingot and billet manufactured by triple-melting [J]. Acta Metall. Sin., 2020, 56(8): 1123
doi: 10.11900/0412.1961.2020.00101
张 勇, 李鑫旭, 韦 康 等. 三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为 [J]. 金属学报, 2020, 56(8): 1123
3 Han Z Y, Zeng G, Liang S J, et al. Development in powder production technology of Ni-based superalloy [J]. Mater. China, 2014, 33(12): 748
韩志宇, 曾 光, 梁书锦 等. 镍基高温合金粉末制备技术的发展现状 [J]. 中国材料进展, 2014, 33(12): 748
4 Yang J L, Zhu X M, Xiong J Y, et al. Effect of inclusion size and distribution on low cycle fatigue properties of an FGH97 superalloy [J]. Rare Metal Mat. Eng., 2020, 49(5): 1614
杨金龙, 朱晓闽, 熊江英 等. 夹杂物尺寸及分布对FGH97高温合金低周疲劳性能的影响 [J]. 稀有金属材料与工程, 2020, 49(5): 1614
5 Hu D Y, Wang T, Ma Q H, et al. Effect of inclusions on low cycle fatigue lifetime in a powder metallurgy nickel-based superalloy FGH96 [J]. Int. J. Fatigue, 2018, 118: 237
doi: 10.1016/j.ijfatigue.2018.09.019
6 Zeng Y P, Zhang M C, Dong J X, et al. Study on crack initiation and propagation induced by inclusion in nickel-base P/M superalloy [J]. J. Mater. Eng., 2005, (3): 10
曾燕屏, 张麦仓, 董建新 等. 镍基粉末高温合金中夹杂物导致裂纹萌生和扩展行为的研究 [J]. 材料工程, 2005, (3): 10
7 Zhang Y, Zhang Y W, Zhang N, et al. Fracture character of low cycle fatigue of P/M superalloy FGH97 [J]. Acta Metall. Sin., 2010, 46(4): 444
doi: 10.3724/SP.J.1037.2009.00626
张 莹, 张义文, 张 娜 等. 粉末冶金高温合金FGH97的低周疲劳断裂特征 [J]. 金属学报, 2010, 46(4): 444
8 Liu X L, Hu C Y, Wang T Y. Influence mechanism of inclusion size on low cycle fatigue of powder metallurgy superalloy [J]. Fail. Anal. Prev., 2018, 13(2): 89
刘新灵, 胡春燕, 王天宇. 夹杂物尺寸对粉末高温合金低周疲劳寿命影响的机制 [J]. 失效分析与预防, 2018, 13(2): 89
9 Qu J L, Zhang X L, Yang S F, et al. Research on inclusions in powder metallurgy superalloy-a review [J]. Powd. Metal. Ind., 2020, 30(5): 1
曲敬龙, 张雪良, 杨树峰 等. 粉末高温合金中夹杂物问题的研究进展 [J]. 粉末冶金工业, 2020, 30(5): 1
10 You Q F, Yuan H, Zhao L H, et al. Removal inclusions from nickel-based superalloy by induced directional solidification during electron beam smelting [J]. Vacuum, 2018, 156: 39
doi: 10.1016/j.vacuum.2018.07.014
11 Kong H H, Yang S F, Qu J L, et al. Type and distribution of inclusion in GH4169 nickel-based superalloy [J]. Acta Aeronautica ET Astronautica Sinica, 2020, 41(4): 304
孔豪豪, 杨树峰, 曲敬龙 等. GH4169铸锭中夹杂物的类型及分布规律 [J]. 航空学报, 2020, 41(4): 304
12 Wang D, Yang S F, Qu J L, et al. Distribution of inclusions on surface of GH4169 ESR ingot [J]. Iron & Steel, 2021, 56(2): 155
王 迪, 杨树峰, 曲敬龙 等. GH4169电渣重熔铸锭表层夹杂物分布规律 [J]. 钢铁, 2021, 56(2): 155
13 Zhang H X, Ma G H, Meng Y, et al. Research on purification control technology of FGH96 master alloy [J]. Foundry, 2018, 67(7): 611
张华霞, 马国宏, 孟宇 等. FGH96母合金洁净化控制技术的研究 [J]. 铸造, 2018, 67(7): 611
14 Zhao H Q, Chen W Q. Effect of crucible material and top slag composition on the inclusion composition of tire cord steel [J]. J. Iron Steel Res., 2012, 24(3): 12
赵昊乾, 陈伟庆. 坩埚材质及顶渣成分对帘线钢夹杂物成分的影响 [J]. 钢铁研究学报, 2012, 24(3): 12
15 Gao X Y, Zhang L, Qu X H, et al. Investigation on the formation mechanism of non-metallic inclusions in high-aluminum and titanium-alloyed Ni-based superalloy [J]. Vacuum, 2020, 177: 109409
doi: 10.1016/j.vacuum.2020.109409
16 Jin W Z, Zhang W, Li T J, et al. Electromagnetic purification of master alloy ingot of K417 superalloy in vacuum [J]. Chin. J. Vac. Sci. Technol., 2011, 31(5): 589
金文中, 张 伟, 李廷举 等. K417高温合金母合金锭真空电磁净化技术研究 [J]. 真空科学与技术学报, 2011, 31(5): 589
17 Zhang X F, Yan L G. Regulating the non-metallic inclusions by pulsed electric current in molten metal [J]. Acta Metall. Sin., 2020, 56(3): 257
doi: 10.11900/0412.1961.2019.00391
张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物 [J]. 金属学报, 2020, 56(3): 257
doi: 10.11900/0412.1961.2019.00391
18 Pu Y L, Kou S Z, Zhang Z D, et al. Effects of compound salt purifiers on composition and microstructure of GH4169 returned alloy [J]. Nonferrous Met., 2018(7): 57
蒲永亮, 寇生中, 张志栋 等. 复合盐净化剂对GH4169返回料成分和组织的影响 [J]. 有色金属, 2018(7): 57
19 Qian K, Chen B, Zhang L, et al. Kinetics study of nitrogen removal from liquid IN718 alloy during vacuum induction melting [J]. Vacuum, 2020, 179: 109521
doi: 10.1016/j.vacuum.2020.109521
20 Wang M M, Yang Y H, Wang D H, et al. Deep deoxidation and desulfurization of cast superalloy K417G [J]. Rare Metal Mat. Eng., 2018, 47(12): 3730
王慢慢, 杨彦红, 王道红 等. 铸造高温合金K417G深度脱氧脱硫的研究 [J]. 稀有金属材料与工程, 2018, 47(12): 3730
21 Ding Y T, Wang W, Li H F, et al. Purification in alloy GH3625 through vacuum induction remelting [J]. Rare Metal Mat. Eng., 2018, 47(2): 687
丁雨田, 王 伟, 李海峰 等. 真空感应重熔GH3625合金纯净化研究 [J]. 稀有金属材料与工程, 2018, 47(2): 687
22 Li J P, Zhang H R, Gao M, et al. Effect of vacuum level on the interfacial reactions between K417 superalloy and Y2O3 crucibles [J]. Vacuum, 2020, 182: 109701
doi: 10.1016/j.vacuum.2020.109701
23 Jang J M, Seo S H, Han J S, et al. Reassessment of TiN(s)=Ti+N equilibration in liquid iron [J]. ISIJ. Int., 2015, 55(11): 2318
doi: 10.2355/isijinternational.ISIJINT-2015-265
24 Li M G, Matsuura H, Tsukihashi F. Investigation on the formation mechanism of Ti-bearing non-metallic inclusions in Fe-Al-Ti-O-N alloy by inductive separation method [J]. Mater. Charact., 2018, 136: 358
doi: 10.1016/j.matchar.2017.12.033
25 Chai G M, Chen X C, Guo H J, et al. Formation mechanism of primary carbides in FGH96 superalloy [J]. Chin. J. Nonferrous Met., 2012, 22(8): 2205
柴国明, 陈希春, 郭汉杰. FGH96高温合金中一次碳化物形成规律 [J]. 中国有色金属学报, 2012, 22(8): 2205
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!