Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (2): 120-128    DOI: 10.11901/1005.3093.2021.721
ARTICLES Current Issue | Archive | Adv Search |
Effect of Deep Cryogenic-Aging Treatment on Microstructure and Mechanical Properties of 7075 Al-alloy
YU Cong1, CHEN Leping1(), JIANG Hongxiang2, ZHOU Quan1, YANG Chenggang1
1.School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

YU Cong, CHEN Leping, JIANG Hongxiang, ZHOU Quan, YANG Chenggang. Effect of Deep Cryogenic-Aging Treatment on Microstructure and Mechanical Properties of 7075 Al-alloy. Chinese Journal of Materials Research, 2023, 37(2): 120-128.

Download:  HTML  PDF(7530KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The 7075 Al-alloy was subjected to T6 aging treatment at deep cryogenic temperature (DCT-T6) via soaking in liquified nitrogen, and its precipitation phase, dislocation density and tensile properties were assessed by means of TEM, SEM and tensile testing techniques. The results show that the DCT-T6 could increase the density of intra-grain precipitated phases, reduce the size of precipitated phase, increase the dislocation density and the formation of sub-grain, in comparison with the conventional T6 treatment. In the range of 3~6 h, with the increase of soaking time, the η' phase density increases and then decreases, and the inflection point is 4 h; the size of grain boundary precipitated phase (GBP) and the phase spacing, the number of linear defects, η phase density, dislocation density and the number of sub-grains all increase constantly; the tensile strength of the alloy increases and then decreases, and the elongation constantly decrease. When the soaking time was 4 h, the tensile strength of the alloy reached a maximum value of 645 MPa, which was 13.1% higher than that of the T6 alloy; when the soaking time was 3 h, the elongation of the alloy reached a maximum value of 13%, which was 44.4% higher than that of the T6 alloy.

Key words:  metallic materials      DCT-T6      microstructure      mechanical properties      7075 aluminum alloy     
Received:  30 December 2021     
ZTFLH:  TG146.2+1  
Fund: National Natural Science Foundation of China(51765046);Graduate Student Innovation Special Fund of Jiangxi Province(YC2021-S670)
About author:  CHEN Leping, Tel: (0791)83863027, E-mail: jnnclp@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.721     OR     https://www.cjmr.org/EN/Y2023/V37/I2/120

ZnMgCuSiMnAl
5.452.531.630.40.3Bal.
Table 1  Chemical composition of 7075 aluminum alloy (%, mass fraction)
Fig.1  Schematic diagram of DCT-T6
Fig.2  Sketch of the tensile sample (unit: mm)
Fig.3  Dependence of tensile strength and elongation on soaking time
Fig.4  Fracture morphologies under different process parameters (a) T6, (b) DCT3h-T6, (c) DCT4h-T6, (d) DCT6h-T6
Fig.5  Metallography images of 7075 aluminum alloy T6 treated with DCT-T6 at different cryogenic times (a) T6, (b) DCT3h-T6, (c) DCT4h-T6, (d) DCT6h-T6
Fig.6  TEM images of intra-grain precipitates of 7075 aluminum alloy T6 treated with DCT-T6 at different cryogenic times (a) T6, (b) DCT3h-T6, (c) DCT4h-T6, (d) DCT6h-T6
Fig.7  TEM images of grain boundary precipitates of 7075 aluminum alloy T6 treated with DCT-T6 at different cryogenic times (a) T6, (b) DCT3h-T6, (c) DCT4h-T6, (d) DCT6h-T6
Fig.8  Dislocation morphologies of 7075 aluminum alloy T6 treated with DCT-T6 at different cryogenic times (a) T6, (b) DCT3h-T6, (c) DCT4h-T6, (d) DCT6h-T6
Fig.9  Morphologies of sub-grains of 7075 aluminum alloy T6 treated with DCT-T6 at different cryogenic time (a) T6, (b) DCT3h-T6, (c) DCT4h-T6, (d) DCT6h-T6
Fig.10  Formation of the sub-grain structure in alloy (a) T6-initial-dislocation; (b) DCT3h-T6-dislocation pile-up; (c) DCT4h-T6-sub-grain
1 Wang Y B, Huang N, Liu L S, et al. Preparation and cutting performance of diamond coated hard alloy cutting tools for 7075 aviation Al-alloy [J]. Chin. J. Mater. Res., 2019, 33(1): 15
王宜豹, 黄 楠, 刘鲁生 等. 加工7075航空铝合金用金刚石涂层刀具的制备及其切削性能 [J]. 材料研究学报, 2019, 33(1): 15
2 Liu T, Su R M, Qu Y D, et al. Effect of laser heat treatment on microstructure and mechanical property of 7075 Al-alloy [J]. Chin. J. Mater. Res., 2018, 32(4): 263
doi: 10.11901/1005.3093.2017.437
刘 桐, 苏睿明, 曲迎东 等. 激光热处理对7075铝合金组织和性能的影响 [J]. 材料研究学报, 2018, 32(4): 263
3 Su R M, Qu Y D, You J H, et al. Effect of pre-aging on stress corrosion cracking of spray-formed 7075 alloy in retrogression and re-aging [J]. J. Mater. Eng. Perform, 2015, 24(11): 4328
doi: 10.1007/s11665-015-1728-2
4 Dong X C, Ni Y, Cai Y J, et al. Prediction model of hot stamping thinning of 7075 aluminum alloy windshield beam [J]. Chin. J. Nonferr. Metals, 2021, 31(3): 590
董晓传, 倪 炀, 蔡玉俊 等. 7075铝合金挡风梁热冲压成形减薄预测模型 [J]. 中国有色金属学报, 2021, 31(3): 590
5 Xie C, Wu X, Min N, et al. Carbon segregation behavior of high-carbon high-alloy steel during deep cryogenic treatment using 3DAP [J]. Acta Metall. Sin., 2015, 51: 325
谢 尘, 吴晓春, 闵 娜 等. 3DAP研究高碳高合金钢深冷处理过程的C偏聚行为 [J]. 金属学报, 2015, 51: 325
6 Li J, Zhou J Z, Xu S Q, et al. Effects of cryogenic treatment on mechanical properties and micro-structures of IN718 super-alloy [J]. Mater. Sci. Eng., 2017, 707A: 612
7 Cabibbo M, Santecchia E, Mengucci P, et al. The role of Cryogenic dipping prior to ECAP in the microstructure, secondary-phase precipitation, mechanical properties and corrosion resistance of AA6012 (Al-Mg-Si-Pb) [J]. Mater. Sci. Eng., 2018, 716A: 107
8 Steier V F, Ashiuchi E S, Reißig L, et al. Effect of a deep cryogenic treatment on wear and microstructure of a 6101 aluminum alloy [J]. Adv. Mater. Sci. Eng., 2016, 2016: 1582490
9 Gao W L, Wang X J, Li G A, et al. Effect of deep cryogenic treatment of -180℃ on strength and toughness properties and precipitation behavior of 7A99 aluminium alloy [J]. Rare Metal Mat. Eng., 2019, 48(9): 2937
高文林, 王向杰, 李国爱 等. -180℃深冷处理对7A99铝合金峰值时效强韧性能与析出行为的影响 [J]. 稀有金属材料与工程, 2019, 48(9): 2937
10 Li M J, Liu G L, Jiang W H, et al. Effect of cryogenic + solid solution + ageing composite treatment on microstructure and mechanical properties of A356 alloy [J]. Chin. J. Rare Metals, 2020, 44: 100
李茂军, 刘光磊, 蒋文辉 等. 深冷+固溶+时效复合处理对A356合金微观组织和力学性能的影响 [J]. 稀有金属, 2020, 44: 100
11 Zhou J Z, Xu S Q, Huang S, et al. Tensile properties and microstructures of a 2024-T351 aluminum alloy subjected to cryogenic treatment [J]. Metals, 2016, 6(11): 279
doi: 10.3390/met6110279
12 Wang J, Fu R D, Li Y J, et al. Effects of deep cryogenic treatment and low-temperature aging on the mechanical properties of friction-stir-welded joints of 2024-T351 aluminum alloy [J]. Mater. Sci. Eng., 2014, 609A: 147
13 Du Z H, Deng Z S, Xiao A, et al. Effect of the aging process on the micro-structure & properties of 7075 aluminum alloy using electromagnetic bulging [J]. J. Manuf. Process., 2021, 70: 15
doi: 10.1016/j.jmapro.2021.08.015
14 Li G R, Cheng J F, Wang H M, et al. The influence of cryogenic-aging circular treatment on the microstructure and properties of aluminum matrix composites [J]. J. Alloys Compd., 2017, 695: 1930
doi: 10.1016/j.jallcom.2016.11.028
15 Li B, Pan Q L, Chen C P, et al. Effects of solution treatment on microstructural and mechanical properties of Al-Zn-Mg alloy by microalloying with Sc and Zr [J]. J. Alloys Compd., 2016, 664: 553
doi: 10.1016/j.jallcom.2016.01.016
16 Wen K, Xiong B Q, Zhang Y A, et al. Over-aging influenced matrix precipitate characteristics improve fatigue crack propagation in a high Zn-containing Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2018, 716A: 42
17 Yang W C, Ji S X, Zhang Q, et al. Investigation of mechanical and corrosion properties of an Al-Zn-Mg-Cu alloy under various ageing conditions and interface analysis of η′ precipitate [J]. Mater. Des., 2015, 85: 752
doi: 10.1016/j.matdes.2015.06.183
18 Chen J Z, Lv L X, Zhen L, et al. Precipitation strengthening model of AA 7055 aluminium alloy [J]. Acta Metall. Sin., 2021, 57(3): 353
doi: 10.11900/0412.1961.2020.00328
陈军洲, 吕良星, 甄 良 等. AA7055铝合金时效析出强化模型 [J]. 金属学报, 2021, 57(3): 353
doi: 10.11900/0412.1961.2020.00328
19 Zhang Z, Deng Y L, Ye L Y, et al. Effect of multi-stage aging treatments on the precipitation and mechanical properties of Al-Zn-Mg alloys [J]. Mater. Sci. Eng., 2020, 785A: 139394
20 Zhang Q L, Luan X, Dhawan S, et al. Development of the post-form strength prediction model for a high-strength 6xxx aluminium alloy with pre-existing precipitates and residual dislocations [J]. Int. J. Plasticity, 2019, 119: 230
doi: 10.1016/j.ijplas.2019.03.013
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!