Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (2): 111-119    DOI: 10.11901/1005.3093.2022.124
ARTICLES Current Issue | Archive | Adv Search |
Effect of Gravity on Primary Phase Morphology and Peritectic Reaction of Sn-20% Ni Alloy
ZHANG Jiajun1,2, LUO Xinghong1,2(), KONG Yafei1,2, ZHANG Guiyuan1,2, LI Yang1
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

ZHANG Jiajun, LUO Xinghong, KONG Yafei, ZHANG Guiyuan, LI Yang. Effect of Gravity on Primary Phase Morphology and Peritectic Reaction of Sn-20% Ni Alloy. Chinese Journal of Materials Research, 2023, 37(2): 111-119.

Download:  HTML  PDF(10753KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The solidification behavior of a Sn-20% (mass fraction) Ni peritectic alloy in conditions of ordinary gravity and microgravity were comparatively studied by using a 50-meter-high drop tube. The solidified microstructure of the alloy was observed by optical metalloscopy (OM), the percentages of residual primary phase, peritectic phase and final solidification phase in the samples were counted by IPP (Image Pro Plus) software, and the solute distribution and phase composition in the samples were determined by means of energy dispersive spectrometer (EDS) and X-ray diffractometer (XRD). The results show that the solidification process of Sn-20% Ni may involve the primary phase nucleation at solid-liquid interface front, dendrite growth and peritectic reaction. Gravity has significant effect on both the primary phase formation and peritectic reaction, resulting in significant difference in the partition and distribution of phases as well as the distribution of alloying elements obtained in the conditions of microgravity and ordinary gravity respectively. The amount of residual primary phase and the total amount of residual primary phase plus peritectic phase in ordinary gravity condition is always lower than those in microgravity condition, while the quantity of peritectic phase is always higher. In addition, the distribution of solute element in the samples are basically consistent with those of the total amount of residual primary phase plus peritectic phase. These results indicate that the microgravity environment is favorable to the formation and growth of primary phase of the Sn-20% Ni alloy, in the contrary, the gravity environment promotes peritectic reaction, which is related to buoyancy convection and crystal nucleus deposition induced by gravity.

Key words:  metallic materials      Sn-Ni alloy      peritectic reaction      drop tube      microgravity      solidification     
Received:  04 March 2022     
ZTFLH:  TG146.1  
Fund: China Manned Space Engineering
About author:  LUO Xinghong, Tel: 13940023803, E-mail: xhluo@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.124     OR     https://www.cjmr.org/EN/Y2023/V37/I2/111

SampleHeating time/sHeating power/kWHeating length/mmInfrared emittance/%Cooling condition
μg240.3105Drop + rapid quenching
1g240.3105Sustained for 3.2 s + rapid quenching
Table 1  Experimental parameters of Sn-20% Ni alloy
Fig.1  Equilibrium phase diagram of Ni-Sn alloy
Fig.2  As-cast solidification structure of the Sn-20% Ni alloy
Fig.3  Temperature-time curves of the Sn-20% Ni alloy samples
Fig.4  Longitudinal section microstructure of 1g (a) and μg (b) samples of the Sn-20% Ni alloy
Fig.5  Close-up of the microstructure of longitudinal section of 1g (a) and μg (b) samples of the Sn-20% Ni alloy
Fig.6  Morphology of dendrites at the central axes of the Sn-20% Ni alloy samples (a) 1 mm away from the remelting interface in 1g sample, (b) 1 mm away from the remelting interface in μg sample, (c) 4 mm away from the remelting interface in 1g sample, (d) 4 mm away from the remelting interface in μg sample
Fig.7  X-ray diffraction patterns of the Sn-20% Ni alloy samples
Fig.8  Distributions of phase percentages along solidification direction in the Sn-20% Ni alloy samples (a) residual primary phase and peritectic phase and (b) residual primary phase+peritectic phase and finally solidified phase
Fig.9  Ni content distribution along the solidification direction of Sn-20% Ni alloy
Fig.10  Radial distributions of Ni content at different distances away from the melting interface in 1g (a) and μg (b) samples of the Sn-20% Ni alloy
1 Liu Q, Zhao H D, Liu G, et al. Research progress on decorative Copper-Zinc imitation Gold alloy [J]. China Resources Comprehensive Utilization, 2018, 36(11): 123
柳 泉, 赵宏达, 刘 革 等. 装饰用铜锌仿金合金的研究进展 [J]. 中国资源综合利用, 2018, 36(11): 123
2 Wang J, Yin J L, Yan B. Development and applications of Cu-Ni-Sn alloy [J]. Nonferrous Metal Materials and Engineering, 2004, (04): 184
王 军, 殷俊林, 严 彪. Cu-Ni-Sn合金的发展和应用 [J]. 上海有色金属, 2004, (04): 184
3 Curtulo J P, Dias M, Bertelli F, et al. The application of an analytical model to solve an inverse heat conduction problem: Transient solidification of a Sn-Sb peritectic solder alloy on distinct substrates [J]. J. Manuf. Process., 2019, 48: 164
doi: 10.1016/j.jmapro.2019.10.029
4 Kumar A, Londhe S, Dandekar T, et al. Effect of cooling rate on the precipitation behavior of a Fe-Cr-Ni alloy [J]. T. Indian. I. Metal., 2020, 73(7): 1961
5 Gao H J, Zhang Z F, Wang H N, et al. Predicting resistance of YBCO tape under direct current impact based on LM neural network [J]. Chinese Journal of Rare Metals, 2021, 45(01): 55
高惠娟, 张志丰, 王浩男 等. YBCO带材直流冲击特性的LM神经网络预测 [J]. 稀有金属, 2021, 45(01): 55
6 Akdeniz M V, Mekhrabov A O, Pehlivanoglu M K. Solidification behaviour of bulk glass-forming alloy systems [J]. J. Alloy. Compd., 2005, 386(1-2): 185
doi: 10.1016/j.jallcom.2004.06.019
7 Gao J, Volkmann T, Roth S, et al. Phase formation in undercooled NdFeB alloy droplets [J]. J. Magn. Magn. Mater., 2001, 234(2): 313
doi: 10.1016/S0304-8853(01)00388-2
8 Gao P, Liu T, Dong M, et al. Magnetostrictive gradient in Tb0.27-Dy0.73Fe1.95 induced by high magnetic field gradient applied during solidification [J]. Funct. Mater. Lett., 2016, 9(1): 1650003
doi: 10.1142/S179360471650003X
9 Sun S W. Growth and characterization of CdZnTe single crystals [D]. Beijing: University of Chinese Academy of Sciences, 2014
孙士文. 碲锌镉单晶生长与晶体质量研究 [D]. 北京: 中国科学院大学, 2014
10 Wang Y Y, Luo X H. Solidification behavior of TC20 alloy under microgravity researched using drop tube [J]. Chinese Journal of Rare Metals, 2018, 42(09): 897
王亚亚, 罗兴宏. 利用落管研究微重力对TC20合金凝固行为的影响 [J]. 稀有金属, 2018, 42(09): 897
11 Zhang N N, Luo X H, Feng S B, et al. Mechanism of gravity effect on solidification microstructure of eutectic alloy [J]. J. Mater. Sci. Technol., 2014, 30(5): 499
doi: 10.1016/j.jmst.2013.11.009
12 Luo X H, Wang Y Y, Li Y. Role of hydrostatic pressure and wall effect in solidification of TC8 alloy [J]. NPJ Microgravity, 2019, 5: 5
doi: 10.1038/s41526-019-0064-5
13 Yu J D, Liu Y, Pan X H, et al. A review on InGaSb growth under microgravity and terrestrial conditions towards future crystal growth project using Chinese recovery satellite SJ-10 [J]. Microgravity. Sci. Tec., 2016, 28(2): 143
14 Peng P, Li S Y, Zheng W C, et al. Macrosegregation and thermosolutal convection-related freckle formation in directionally solidified Sn-Ni peritectic alloy in crucibles with different diameters [J]. T. Nonferr. Metal. Soc., 2021, 31(10): 3096
doi: 10.1016/S1003-6326(21)65718-7
15 Peng P, Li X Z, Li J G. Novel morphologies of intermetallic phases in Sn-Ni peritectic alloys [J]. Mater. Lett., 2017, 200: 31
doi: 10.1016/j.matlet.2017.04.091
16 Zheng S, Shi P, Cheng X. Lithium storage properties of electro-deposited Sn-Ni alloy electrode in lithiumion battery [J]. Chinese Journal of Power Sources, 2006, 30(1): 24
17 Wan C Y, Liu X Y, Ye J Y. Tailorable deposition of Sn-Ni alloy from a pyrophosphate bath with an adjustable Sn:Ni molar ratio [J]. Surf. Coat. Tech., 2019, 369: 244
doi: 10.1016/j.surfcoat.2019.04.070
18 Wang Y Y. Investigation of solidification of several titanium, aluminum alloys and aluminum matrix composite under micro-gravity [D]. Hefei: University of Science and Technology of China, 2018
王亚亚. 几种钛、铝合金与铝基复合材料微重力凝固研究 [D]. 合肥: 中国科学技术大学, 2018
19 Nagasaki S, Hirabayashi M. Binary Alloy Phase Diagrams [M]. Tokyo: AGNE Gijutsu, Center Co Ltd, 2002, 7
20 Zhang N N. Solidification behavior of eutectic alloy under falling tube microgravity and gravity environment [D]. Beijing: University of Chinese Academy of Sciences, 2013
张楠楠. 共晶合金在落管微重力与重力环境下的凝固行为研究 [D]. 北京: 中国科学院大学, 2013
21 Hu H Q. Principle of Metal Solidification [M]. Beijing: China Machine Press, 2000
胡汉起. 金属凝固原理 [M]. 北京: 机械工业出版社, 2000
22 Ren Y H. Investigation of solidification of Ni-based binary single crystal alloys under microgravity and normal gravity conditions in drop tube [D]. Beijing: University of Chinese Academy of Sciences, 2014
任玉虎. 镍基二元单晶合金在落管微重力与重力环境下的凝固行为研究 [D]. 北京: 中国科学院大学, 2014
23 Luo X H, Jin D Y, Ren Y H. Growth of single crystal alloy under microgravity condition [J]. Materials China, 2017, 36(04): 22
罗兴宏, 晋冬艳, 任玉虎. 微重力条件下单晶合金的凝固生长 [J]. 中国材料进展, 2017, 36(04): 22
24 Kong Y F, Luo X H, Li Y, et al. Gravity-induced solidification segregation and its effect on dendrite growth in Al-2.8% Cu alloy [J]. Microgravity. Sci. Tech., 2021, 33(6): 72
doi: 10.1007/s12217-021-09913-4
25 Feng S B, Luo X H. Dendrite growth of SRR99 Nickel-base single crystal superalloy under microgravity condition formed by long drop tube [J]. Chinese Journal of Rare Metals, 2012, 36(03): 341
封少波, 罗兴宏. SRR99镍基单晶高温合金在落管微重力环境下的枝晶生长行为研究 [J]. 稀有金属, 2012, 36(03): 341
26 Herlach D M. Nonequilibrium solidification of undercooled metallic melts [J]. Materials Science and Engineering Reports, 1994, 12(4-5): 177
doi: 10.1016/0927-796X(94)90011-6
27 Feng S B, Zhang N N, Luo X H. Influence of segregation on liquid density in the mushy zone of DZ483 Ni-based superalloy [J]. Acta. Metall. Sin., 2012, 48(05): 541
doi: 10.3724/SP.J.1037.2012.00037
封少波, 张楠楠, 罗兴宏. 偏析对DZ483镍基高温合金糊状区内液相密度的影响 [J]. 金属学报, 2012, 48(05): 541
28 Miao N, Wang J, Liu Z H, et al. Dynamic numerical simulation analysis and transient experimental test of internal magnetic field for magneto-rheological damper during the impact [J]. Chinese Journal of Applied Mechanics, 2020, 37(04): 1763
苗 楠, 王 菁, 刘战合 等. 微重力落塔实验中的流体行为仿真与分析 [J]. 应用力学学报, 2020, 37(04): 1763
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!