|
|
Effect of Gravity on Primary Phase Morphology and Peritectic Reaction of Sn-20% Ni Alloy |
ZHANG Jiajun1,2, LUO Xinghong1,2( ), KONG Yafei1,2, ZHANG Guiyuan1,2, LI Yang1 |
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
|
Cite this article:
ZHANG Jiajun, LUO Xinghong, KONG Yafei, ZHANG Guiyuan, LI Yang. Effect of Gravity on Primary Phase Morphology and Peritectic Reaction of Sn-20% Ni Alloy. Chinese Journal of Materials Research, 2023, 37(2): 111-119.
|
Abstract The solidification behavior of a Sn-20% (mass fraction) Ni peritectic alloy in conditions of ordinary gravity and microgravity were comparatively studied by using a 50-meter-high drop tube. The solidified microstructure of the alloy was observed by optical metalloscopy (OM), the percentages of residual primary phase, peritectic phase and final solidification phase in the samples were counted by IPP (Image Pro Plus) software, and the solute distribution and phase composition in the samples were determined by means of energy dispersive spectrometer (EDS) and X-ray diffractometer (XRD). The results show that the solidification process of Sn-20% Ni may involve the primary phase nucleation at solid-liquid interface front, dendrite growth and peritectic reaction. Gravity has significant effect on both the primary phase formation and peritectic reaction, resulting in significant difference in the partition and distribution of phases as well as the distribution of alloying elements obtained in the conditions of microgravity and ordinary gravity respectively. The amount of residual primary phase and the total amount of residual primary phase plus peritectic phase in ordinary gravity condition is always lower than those in microgravity condition, while the quantity of peritectic phase is always higher. In addition, the distribution of solute element in the samples are basically consistent with those of the total amount of residual primary phase plus peritectic phase. These results indicate that the microgravity environment is favorable to the formation and growth of primary phase of the Sn-20% Ni alloy, in the contrary, the gravity environment promotes peritectic reaction, which is related to buoyancy convection and crystal nucleus deposition induced by gravity.
|
Received: 04 March 2022
|
|
Fund: China Manned Space Engineering |
About author: LUO Xinghong, Tel: 13940023803, E-mail: xhluo@imr.ac.cn
|
1 |
Liu Q, Zhao H D, Liu G, et al. Research progress on decorative Copper-Zinc imitation Gold alloy [J]. China Resources Comprehensive Utilization, 2018, 36(11): 123
|
|
柳 泉, 赵宏达, 刘 革 等. 装饰用铜锌仿金合金的研究进展 [J]. 中国资源综合利用, 2018, 36(11): 123
|
2 |
Wang J, Yin J L, Yan B. Development and applications of Cu-Ni-Sn alloy [J]. Nonferrous Metal Materials and Engineering, 2004, (04): 184
|
|
王 军, 殷俊林, 严 彪. Cu-Ni-Sn合金的发展和应用 [J]. 上海有色金属, 2004, (04): 184
|
3 |
Curtulo J P, Dias M, Bertelli F, et al. The application of an analytical model to solve an inverse heat conduction problem: Transient solidification of a Sn-Sb peritectic solder alloy on distinct substrates [J]. J. Manuf. Process., 2019, 48: 164
doi: 10.1016/j.jmapro.2019.10.029
|
4 |
Kumar A, Londhe S, Dandekar T, et al. Effect of cooling rate on the precipitation behavior of a Fe-Cr-Ni alloy [J]. T. Indian. I. Metal., 2020, 73(7): 1961
|
5 |
Gao H J, Zhang Z F, Wang H N, et al. Predicting resistance of YBCO tape under direct current impact based on LM neural network [J]. Chinese Journal of Rare Metals, 2021, 45(01): 55
|
|
高惠娟, 张志丰, 王浩男 等. YBCO带材直流冲击特性的LM神经网络预测 [J]. 稀有金属, 2021, 45(01): 55
|
6 |
Akdeniz M V, Mekhrabov A O, Pehlivanoglu M K. Solidification behaviour of bulk glass-forming alloy systems [J]. J. Alloy. Compd., 2005, 386(1-2): 185
doi: 10.1016/j.jallcom.2004.06.019
|
7 |
Gao J, Volkmann T, Roth S, et al. Phase formation in undercooled NdFeB alloy droplets [J]. J. Magn. Magn. Mater., 2001, 234(2): 313
doi: 10.1016/S0304-8853(01)00388-2
|
8 |
Gao P, Liu T, Dong M, et al. Magnetostrictive gradient in Tb0.27-Dy0.73Fe1.95 induced by high magnetic field gradient applied during solidification [J]. Funct. Mater. Lett., 2016, 9(1): 1650003
doi: 10.1142/S179360471650003X
|
9 |
Sun S W. Growth and characterization of CdZnTe single crystals [D]. Beijing: University of Chinese Academy of Sciences, 2014
|
|
孙士文. 碲锌镉单晶生长与晶体质量研究 [D]. 北京: 中国科学院大学, 2014
|
10 |
Wang Y Y, Luo X H. Solidification behavior of TC20 alloy under microgravity researched using drop tube [J]. Chinese Journal of Rare Metals, 2018, 42(09): 897
|
|
王亚亚, 罗兴宏. 利用落管研究微重力对TC20合金凝固行为的影响 [J]. 稀有金属, 2018, 42(09): 897
|
11 |
Zhang N N, Luo X H, Feng S B, et al. Mechanism of gravity effect on solidification microstructure of eutectic alloy [J]. J. Mater. Sci. Technol., 2014, 30(5): 499
doi: 10.1016/j.jmst.2013.11.009
|
12 |
Luo X H, Wang Y Y, Li Y. Role of hydrostatic pressure and wall effect in solidification of TC8 alloy [J]. NPJ Microgravity, 2019, 5: 5
doi: 10.1038/s41526-019-0064-5
|
13 |
Yu J D, Liu Y, Pan X H, et al. A review on InGaSb growth under microgravity and terrestrial conditions towards future crystal growth project using Chinese recovery satellite SJ-10 [J]. Microgravity. Sci. Tec., 2016, 28(2): 143
|
14 |
Peng P, Li S Y, Zheng W C, et al. Macrosegregation and thermosolutal convection-related freckle formation in directionally solidified Sn-Ni peritectic alloy in crucibles with different diameters [J]. T. Nonferr. Metal. Soc., 2021, 31(10): 3096
doi: 10.1016/S1003-6326(21)65718-7
|
15 |
Peng P, Li X Z, Li J G. Novel morphologies of intermetallic phases in Sn-Ni peritectic alloys [J]. Mater. Lett., 2017, 200: 31
doi: 10.1016/j.matlet.2017.04.091
|
16 |
Zheng S, Shi P, Cheng X. Lithium storage properties of electro-deposited Sn-Ni alloy electrode in lithiumion battery [J]. Chinese Journal of Power Sources, 2006, 30(1): 24
|
17 |
Wan C Y, Liu X Y, Ye J Y. Tailorable deposition of Sn-Ni alloy from a pyrophosphate bath with an adjustable Sn:Ni molar ratio [J]. Surf. Coat. Tech., 2019, 369: 244
doi: 10.1016/j.surfcoat.2019.04.070
|
18 |
Wang Y Y. Investigation of solidification of several titanium, aluminum alloys and aluminum matrix composite under micro-gravity [D]. Hefei: University of Science and Technology of China, 2018
|
|
王亚亚. 几种钛、铝合金与铝基复合材料微重力凝固研究 [D]. 合肥: 中国科学技术大学, 2018
|
19 |
Nagasaki S, Hirabayashi M. Binary Alloy Phase Diagrams [M]. Tokyo: AGNE Gijutsu, Center Co Ltd, 2002, 7
|
20 |
Zhang N N. Solidification behavior of eutectic alloy under falling tube microgravity and gravity environment [D]. Beijing: University of Chinese Academy of Sciences, 2013
|
|
张楠楠. 共晶合金在落管微重力与重力环境下的凝固行为研究 [D]. 北京: 中国科学院大学, 2013
|
21 |
Hu H Q. Principle of Metal Solidification [M]. Beijing: China Machine Press, 2000
|
|
胡汉起. 金属凝固原理 [M]. 北京: 机械工业出版社, 2000
|
22 |
Ren Y H. Investigation of solidification of Ni-based binary single crystal alloys under microgravity and normal gravity conditions in drop tube [D]. Beijing: University of Chinese Academy of Sciences, 2014
|
|
任玉虎. 镍基二元单晶合金在落管微重力与重力环境下的凝固行为研究 [D]. 北京: 中国科学院大学, 2014
|
23 |
Luo X H, Jin D Y, Ren Y H. Growth of single crystal alloy under microgravity condition [J]. Materials China, 2017, 36(04): 22
|
|
罗兴宏, 晋冬艳, 任玉虎. 微重力条件下单晶合金的凝固生长 [J]. 中国材料进展, 2017, 36(04): 22
|
24 |
Kong Y F, Luo X H, Li Y, et al. Gravity-induced solidification segregation and its effect on dendrite growth in Al-2.8% Cu alloy [J]. Microgravity. Sci. Tech., 2021, 33(6): 72
doi: 10.1007/s12217-021-09913-4
|
25 |
Feng S B, Luo X H. Dendrite growth of SRR99 Nickel-base single crystal superalloy under microgravity condition formed by long drop tube [J]. Chinese Journal of Rare Metals, 2012, 36(03): 341
|
|
封少波, 罗兴宏. SRR99镍基单晶高温合金在落管微重力环境下的枝晶生长行为研究 [J]. 稀有金属, 2012, 36(03): 341
|
26 |
Herlach D M. Nonequilibrium solidification of undercooled metallic melts [J]. Materials Science and Engineering Reports, 1994, 12(4-5): 177
doi: 10.1016/0927-796X(94)90011-6
|
27 |
Feng S B, Zhang N N, Luo X H. Influence of segregation on liquid density in the mushy zone of DZ483 Ni-based superalloy [J]. Acta. Metall. Sin., 2012, 48(05): 541
doi: 10.3724/SP.J.1037.2012.00037
|
|
封少波, 张楠楠, 罗兴宏. 偏析对DZ483镍基高温合金糊状区内液相密度的影响 [J]. 金属学报, 2012, 48(05): 541
|
28 |
Miao N, Wang J, Liu Z H, et al. Dynamic numerical simulation analysis and transient experimental test of internal magnetic field for magneto-rheological damper during the impact [J]. Chinese Journal of Applied Mechanics, 2020, 37(04): 1763
|
|
苗 楠, 王 菁, 刘战合 等. 微重力落塔实验中的流体行为仿真与分析 [J]. 应用力学学报, 2020, 37(04): 1763
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|