Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (12): 907-914    DOI: 10.11901/1005.3093.2022.634
ARTICLES Current Issue | Archive | Adv Search |
Effect of Defects on High Cycle Fatigue Properties of Selective Laser Melting 316L Stainless Steel
FENG Feng, YANG Bing(), CHEN Dongdong, WANG Mingmeng, XIAO Shoune, YANG Guangwu, ZHU Tao
State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
Cite this article: 

FENG Feng, YANG Bing, CHEN Dongdong, WANG Mingmeng, XIAO Shoune, YANG Guangwu, ZHU Tao. Effect of Defects on High Cycle Fatigue Properties of Selective Laser Melting 316L Stainless Steel. Chinese Journal of Materials Research, 2023, 37(12): 907-914.

Download:  HTML  PDF(7972KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The metal materials manufactured by laser selective melting technology have better mechanical properties than traditional casting materials and are suitable for the manufacture of various complex parts. However, the defects introduced in the process implementation are the main factors restricting the fatigue properties. Therefore, the mechanical performance of the SLM prepared 316L stainless steels was assessed. The results show that the tensile strength, yield strength, and elongation of 316L stainless steel formed by laser selective melting process are 816.8, 720.4 MPa, and 33.83%, respectively, which are much higher than that of the forged parts. However, it is found that the measured data of fatigue life are much dispersed due to the initiation of cracks on defects in the surface and/or near-surface during fatigue testing. The reference S-N curve of the material was obtained by the maximum likelihood method, and the fatigue limit was predicted to be 259 MPa. At the same time, combined with the √area parameter and the extreme statistical method, the maximum defect and fatigue limit of the material was predicted. The error between the fatigue limit prediction results and the test results is less than 10%, which provides a partial safety estimation method for the safety evaluation of the material.

Key words:  metallic materials      fatigue      defect      316L stainless steel      selective laser melting     
Received:  29 November 2022     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(52375159);Sichuan Science and Technology Program(2022YFH0075);Independent Research Project of State Key Laboratory of Traction Power(2022TPL-T03)
Corresponding Authors:  YANG Bing, Tel: 18080053540, E-mail: yb@swjtu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.634     OR     https://www.cjmr.org/EN/Y2023/V37/I12/907

Fig.1  SEM images of 316L stainless steel powder (a) low magnification; (b) high magnification
Fig.2  INSTRON E10000 electronic tensile torsional testing machine
Fig.3  Various sample sizes and SLM-formed samples(a) dimensions of tensile specimens; (b) dimensions of fatigue specimens; (c) SLM-formed samples (unit: mm)
Fig.4  OM microstructure of SLM 316L stainless steel in different directions (a) stacking direction; (b) scanning direction
Fig.5  SEM images of SLM 316L stainless steel in different directions (a) stacking direction; (b) scanning direction
Specimen

Tensile stength

/ MPa

Yield strength

/ MPa

Elongation

/ %

SLM 316L816.8720.433.83
Cast 316L [24]54826852
Table 1  Tensile properties of SLM 316L stainless steel with different building directions
Fig.6  S-N curve of SLM 316L samples
Fig.7  Fatigue fracture surface of SLM 316L sample (σ=300 MPa, Nf=1.69×106)
Fig.8  Fatigue source areas of different specimens under the same stress amplitude:(a) σ= 270 MPa, Nf= 3.2×106; (b) σ= 270 MPa, Nf=1.2×105
Fig.9  Estimation method for the effective size of irregularly shaped defects and defects near surface.
(a)irregularly shaped internal defect; (b)irregularly shaped surface defect; (c)irregularly shaped internal defect in interaction with surface; (d)interacting adjacent two surface defects
Fig.10  Local OM image of sample section
Fig.11  Statistical analysis of defect extremum values of sample sections
1 Roschli A, Gaul K T, Boulger A M, et al. Designing for big area additive manufacturing [J]. Addit. Manuf., 2019, 25: 275
doi: 10.1016/j.addma.2018.11.006
2 Liu Z F, Huang Y D, Yang X, et al. Preparation of graphene/Ni-Cu alloy composite on Ni-Cu alloy template made by selective laser melting [J]. Chin. J. Mater. Res., 2021, 35(1): 1
刘主峰, 黄耀东, 杨 潇 等. 基于激光选区熔化成形Ni-Cu合金模板的Ni-Cu-石墨烯复合材料的制备 [J]. 材料研究学报, 2021, 35(1): 1
3 Liu G, Zhang X F, Chen X L, et al. Additive manufacturing of structural materials [J]. Mater. Sci. Eng., 2021, 145R: 100596
4 Dong Z H, Kang H W, Xie Y J, et al. Effect of Cr-content on microstructure of 12CrNi2 alloy steel prepared by laser additive manufacturing [J]. Chin. J. Mater. Res., 2018, 32(11): 827
董志宏, 亢红伟, 谢玉江 等. Cr含量对激光增材制造12CrNi2合金钢的组织结构的影响 [J]. 材料研究学报, 2018, 32(11): 827
5 Tucho W M, Lysne V H, Austbø H, et al. Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L [J]. J. Alloys Compd., 2018, 740: 910
doi: 10.1016/j.jallcom.2018.01.098
6 Zong X W, Gao Q, Zhou H Z, et al. Effects of bulk laser energy density on anisotropy of selective laser sintered 316L stainless steel [J]. Chin. J. Lasers, 2019, 46: 0502003
宗学文, 高 倩, 周宏志 等. 体激光能量密度对选区激光熔化316L不锈钢各向异性的影响 [J]. 中国激光, 2019, 46: 0502003
7 Charmi A, Falkenberg R, Ávila L, et al. Mechanical anisotropy of additively manufactured stainless steel 316L: an experimental and numerical study [J]. Mater. Sci. Eng., 2021, 799A: 140154
8 Deev A A, Kuznetcov P A, Petrov S N. Anisotropy of mechanical properties and its correlation with the structure of the stainless steel 316L produced by the SLM method [J]. Phys. Procedia, 2016, 83: 789
doi: 10.1016/j.phpro.2016.08.081
9 Roth C C, Tancogne-Dejean T, Mohr D. Plasticity and fracture of cast and SLM AlSi10Mg: high-throughput testing and modeling [J]. Addit. Manuf., 2021, 43: 101998
10 Gupta M K, Singla A K, Ji H S, et al. Impact of layer rotation on micro-structure, grain size, surface integrity and mechanical behaviour of SLM Al-Si-10Mg alloy [J]. J. Mater. Res. Technol., 2020, 9(5): 9506
doi: 10.1016/j.jmrt.2020.06.090
11 Diao W, Du L, Wang Y B, et al. Anisotropy of Ti6Al4V alloy fabricated by selective laser melting [J]. Chin. J. Mater. Res., 2022, 36(3): 231
doi: 10.11901/1005.3093.2021.105
刁 威, 杜 磊, 汪彦博 等. 选区激光熔化Ti6Al4V合金的各向异性 [J]. 材料研究学报, 2022, 36(3): 231
12 Agius D, Kourousis K I, Wallbrink C, et al. Cyclic plasticity and microstructure of as-built SLM Ti-6Al-4V: the effect of build orientation [J]. Mater. Sci. Eng., 2017, 701A: 85
13 Qin F, Shi Q, Liu X, et al. Effect of heat treatment on microstructure and mechanical properties of selective laser melted 17-4PH stainless steel [J]. Chin. J. Mater. Res., 2021, 35(8): 606
doi: 10.11901/1005.3093.2020.553
秦 奉, 施 麒, 刘 辛 等. 热处理对选区激光熔化17-4PH不锈钢力学性能的影响 [J]. 材料研究学报, 2021, 35(8): 606
14 Zhang Y J, Wang H B, Song X Y, et al. Preparation and performance of spherical Ni powder for SLM processing [J]. Acta Metall. Sin., 2018, 54(12): 1833
doi: 10.11900/0412.1961.2018.00153
张亚娟, 王海滨, 宋晓艳 等. SLM球形Ni粉的制备与打印工艺性能 [J]. 金属学报, 2018, 54(12): 1833
doi: 10.11900/0412.1961.2018.00153
15 Liverani E, Toschi S, Ceschini L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel [J]. J. Mater. Process. Technol., 2017, 249: 255
doi: 10.1016/j.jmatprotec.2017.05.042
16 Yu C F, Zhao C C, Zhang Z F, et al. Tensile properties of selective laser melted 316L stainless steel [J]. Acta Metall. Sin., 2020, 56(5): 683
doi: 10.11900/0412.1961.2019.00278
余晨帆, 赵聪聪, 张哲峰 等. 选区激光熔化316L不锈钢的拉伸性能 [J]. 金属学报, 2020, 56(5): 683
doi: 10.11900/0412.1961.2019.00278
17 Tascioglu E, Karabulut Y, Kaynak Y. Influence of heat treatment temperature on the microstructural, mechanical, and wear behavior of 316L stainless steel fabricated by laser powder bed additive manufacturing [J]. Int. J. Adv. Manuf. Technol., 2020, 107(5-6): 1947
doi: 10.1007/s00170-020-04972-0
18 Liverani E, Lutey A H A, Ascari A, et al. The effects of hot isostatic pressing (HIP) and solubilization heat treatment on the density, mechanical properties, and microstructure of austenitic stainless steel parts produced by selective laser melting (SLM) [J]. Int. J. Adv. Manuf. Technol., 2020, 107(1-2): 109
doi: 10.1007/s00170-020-05072-9
19 Smith T R, Sugar J D, Schoenung J M, et al. Relationship between manufacturing defects and fatigue properties of additive manufactured austenitic stainless steel [J]. Mater. Sci. Eng., 2019, 765A: 138268
20 Kumar P, Jayaraj R, Suryawanshi J, et al. Fatigue strength of additively manufactured 316L austenitic stainless steel [J]. Acta Mater., 2020, 199: 225
doi: 10.1016/j.actamat.2020.08.033
21 Kale A B, Singh J, Kim B K, et al. Effect of initial microstructure on the deformation heterogeneities of 316L stainless steels fabricated by selective laser melting processing [J]. J. Mater. Res. Technol., 2020, 9(4): 8867
doi: 10.1016/j.jmrt.2020.06.015
22 Dryepondt S, Nandwana P, Fernandez-Zelaia P, et al. Microstructure and high temperature tensile properties of 316L fabricated by laser powder-bed fusion [J]. Addit. Manuf., 2021, 37: 101723
23 Song Y N, Sun Q D, Guo K, et al. Effect of scanning strategies on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting [J]. Mater. Sci. Eng., 2020, 793A: 139879
24 Meng Q, La P Q, Li H, et al. Influence of Al content on microstructure and properties of casting 316L stainless steel [J]. Hot Work. Technol., 2016, 45(10): 64
孟 倩, 喇培清, 李 恒 等. 铝含量对铸造316L不锈钢组织和性能的影响 [J]. 热加工工艺, 2016, 45(10): 64
25 Cheng L Y, Zhu X G, Liu Z W, et al. Effect of heat treatment on microstructure and mechanical properties of 316L stainless steel prepared by selective laser melting [J]. Trans. Mater. Heat Treat., 2020, 41(7): 80
程灵钰, 朱小刚, 刘正武 等. 热处理对激光选区熔化成形316L不锈钢组织和力学性能的影响 [J]. 材料热处理学报, 2020, 41(7): 80
doi: 10.13289/j.issn.1009-6264.2020-0068
26 Ling J, Pan J. A maximum likelihood method for estimating P-S-N curves [J]. Int. J. Fatigue, 1997, 19(5): 415
doi: 10.1016/S0142-1123(97)00037-6
27 Beretta S, Romano S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes [J]. Inter. J. Fatigue, 2017, 94: 178
doi: 10.1016/j.ijfatigue.2016.06.020
28 Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V [J]. Mater. Sci. Eng., 2014, 598A: 327
29 Murakami Y. Material defects as the basis of fatigue design [J]. Int. J. Fatigue, 2012, 41: 2
doi: 10.1016/j.ijfatigue.2011.12.001
30 Romano S, Brandão A, Gumpinger J, et al. Qualification of AM parts: extreme value statistics applied to tomographic measurements [J]. Mater. Des., 2017, 131: 32
doi: 10.1016/j.matdes.2017.05.091
31 Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength [J]. Int. J. Fatigue, 1994, 16(3): 163
doi: 10.1016/0142-1123(94)90001-9
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] LIU Tianfu, ZHANG Bin, ZHANG Junfeng, XU Qiang, SONG Zhuman, ZHANG Guangping. Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy[J]. 材料研究学报, 2023, 37(7): 511-522.
No Suggested Reading articles found!