Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (12): 915-923    DOI: 10.11901/1005.3093.2022.677
ARTICLES Current Issue | Archive | Adv Search |
Effect of Adding High Purity Rare Earth on Primary Carbide in M50 Steel
DENG Chaohui1,2, CHEN Yun1(), GONG Tongzhao1, XU Chuang1,2, CHEN Xingqiu1, FU Paixian1, LI Dianzhong1
1.Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

DENG Chaohui, CHEN Yun, GONG Tongzhao, XU Chuang, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Adding High Purity Rare Earth on Primary Carbide in M50 Steel. Chinese Journal of Materials Research, 2023, 37(12): 915-923.

Download:  HTML  PDF(22898KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The large coarsened primary carbides precipitated from melt during solidification is a main factor that impacts the property of M50 bearing steel. In this paper, the effect of adding a relatively large amount of high purity rare earth on the precipitation of primary carbides is studied, including the La-Ce mischmetal and pure Ce. The characterized casting microstructure demonstrated that adding rare earth can effectively reduce and refine the primary carbides, especially for the ingot with addition of only high purity Ce. The mechanism of the effect of rare earth addition on the precipitation of primary carbides is then revealed. On the one hand, the added rare earth modified the traditional inclusions into the compound with rare earth, which can be the effective nucleation agent for δ-ferrite and austenite during solidification. And consequently, the dendritic grains and its secondary arm spacing can be refined, which is favor of impeding the diffusion of carbide formation elements in the liquid and then retards the carbide growth. On the other hand, the ab initio molecular dynamics simulations demonstrated that Ce can interact with other elements in the melt and lower the diffusion coefficients of Fe and C, and thus in turn lowers the growth rate of carbide and makes the primary carbides precipitated finer and more dispersive.

Key words:  metallic materials      M50 bearing steel      high purity rare earth      primary carbide      Ab-initio molecular dynamics simulation     
Received:  23 December 2022     
ZTFLH:  TG142.1  
Fund: National Key Research and Development Program of China(YFB3501503);Strategic Priority Research Program of the Chinese Academy of Sciences(XDC04040202);National Natural Science Foundation of China(52031013);China Postdoctoral Science Foundation(2021TQ0335)
Corresponding Authors:  CHEN Yun, Tel: 15140153579, E-mail: Chenyun@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.677     OR     https://www.cjmr.org/EN/Y2023/V37/I12/915

Fig.1  Quasi binary Fe-C equilibrium phase diagram of M50 steel
SamplesCCrMoVMnSiOCeLaFe
M500.824.284.110.970.28<0.050.0009--
M50-Ce0.854.334.321.010.270.050.00060.11-Bal.
M50-RE0.834.294.271.000.260.050.00080.150.076
Table 1  Composition of the three M50 steel ingots (mass fraction, %)
Fig.2  As-cast microstructure from the edge to the center of M50 steel ingot without rare earth addition (a, b) at the edge of ingot; (c, d) at the half radius; (e, f) at the center
Fig.3  Typical morphology of the blocky and eutectic primary carbides in M50 steel
Fig.4  EDS map scanning analysis results of primary carbide in M50 steel without adding rare earth
Fig.5  XRD diffraction of primary carbide powder in M50 steel
ElementMass fraction / %Atomic fraction / %
BlockyEutecticBlockyEutectic
Fe3.4267.0072.4436.285
Cr4.62115.3043.53814.744
V35.96310.31728.11310.146
Mo40.53959.94816.82631.303
C14.8028.99549.07837.520
Table 2  Statistical averaged composition of primary carbide using EPMA quantitative analysis
Fig.6  As-cast microstructure at the center of the three ingots with addition of different rare earth
Fig.7  Statistical average of the area of blocky (a) and eutectic (b) carbides in the three ingots with different rare earth additions
Fig.8  Statistics of mismatch between rare earth inclusions and austenite (a) and rare earth inclusion in as-cast structure (b)
Fig.9  Dendritic microstructure in the three ingots
Secondary dendrite spacing / μmAverage / μm
M5073.7101.539.455.044.551.947.764.259.7
M50-Ce52.439.341.440.1----43.3
M50-RE47.151.359.150.952.960.263.2-55.0
Table 3  Statistics of secondary dendrite spacing in the three ingots
Fig.10  Effect of Ce atoms on atomic dynamics of liquid Fe-Cr-C system
1 Guo J, Yang M S, Lu D H, et al. Rotational bending fatigue life and fatigue crack initiation mechanism of Cr4Mo4V bearing steel [J]. J. Mater. Eng, 2019, 47(7): 134
doi: 10.11868/j.issn.1001-4381.2017.000256
郭 军, 杨卯生, 卢德宏 等. Cr4Mo4V轴承钢旋转弯曲疲劳寿命及疲劳裂纹萌生机理 [J]. 材料工程, 2019, 47(7): 134
2 Guetard G, Toda-Caraballo I, Rivera-Díaz-del-Castillo P E J. Damage evolution around primary carbides under rolling contact fatigue in VIM-VAR M50 [J]. Int. J. Fatigue, 2016, 91: 59
doi: 10.1016/j.ijfatigue.2016.05.026
3 Nygaard J R, Rawson M, Danson P, et al. Bearing steel microstructures after aircraft gas turbine engine service [J]. Mater. Sci. Technol., 2014, 30: 1911
doi: 10.1179/1743284714Y.0000000548
4 Iqbal A, King J E. The role of primary carbides in fatigue crack propagation in aeroengine bearing steels [J]. Int. J. Fatigue, 1990, 12(4): 234
doi: 10.1016/0142-1123(90)90450-S
5 Li S S, Chen Y, Gong T Z, et al. Effect of cooling rate on the precipitation mechanism of primary carbide during solidification in high carbon-chromium bearing steel [J]. Acta Metall. Sin. 2022, 58(8): 1024
doi: 10.11900/0412.1961.2021.00024
李闪闪, 陈 云, 巩桐兆 等. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响 [J]. 金属学报, 2022, 58(8): 1024
doi: 10.11900/0412.1961.2021.00024
6 Gong T Z, Chen Y, Li S S, et al. Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy [J]. J. Mater. Sci. Technol, 2021, 74: 155
doi: 10.1016/j.jmst.2020.09.038
7 Bhadeshia H K D H. Steels for bearings [J]. Progress Mater. Sci., 2012, 57(2): 268
doi: 10.1016/j.pmatsci.2011.06.002
8 Zhou D G, Fu J, Wang P, et al. Formation mechanism of carbon segregation for bearing steel concasting billet and its influencing factors [J]. J. Univ. Sci. Technol. Beijing, 1999, 21(2): 131
周德光, 傅 杰, 王 平 等. 轴承钢连铸坯碳偏析的形成机理及影响因素 [J]. 北京科技大学学报, 1999, 21(2): 131
9 Guan J, Wang L Q, Zhang Z Q, et al. Fatigue crack nucleation and propagation at clustered metallic carbides in M50 bearing steel [J]. Tribol. Int., 2018, 119: 165
doi: 10.1016/j.triboint.2017.10.016
10 Kim K H, Bae C M. Reduction of segregation during casting of 100Cr6 bearing steel by cerium inoculation [J]. Met. Mater. Int., 2013, 19(3): 371
doi: 10.1007/s12540-013-3001-2
11 Li J, Ma J H, Song C J, et al. Columnar to equiaxed transition during solidification of small ingot by using electric current pulse [J]. J. Iron Steel Res. Int., 2009, 16(6): 7
12 Ma J H, Li J, Gao Y L, et al. Effect of peak value and discharge frequency of electric current pulse on solidification structure of Fe-1C-1.5Cr bearing steel [J]. Ironmak. Steelmak., 2009, 36(4): 286
doi: 10.1179/174328108X380654
13 Cheng Y, Xu Z S, Zhou Z, et al. Application of PMO solidification homogenization technology in continuous casting production of GCr15 bearing steel [J]. Shanghai Met., 2016, 38(4): 54
程 勇, 徐智帅, 周 湛 等. PMO凝固均质化技术在连铸GCr15轴承钢生产中的应用 [J]. 上海金属, 2016, 38(4): 54
14 Wu Y C, Jiang H W, Hu Y, et al. Effect of multi-direction forging on carbide evolution of M50 steel [J]. China Metall., 2020, 30(9):98
吴玉成, 姜宏伟, 胡 园 等. 多向锻造对M50钢一次碳化物破碎机制的影响 [J]. 中国冶金, 2020, 30(9): 98
15 Hufenbach J, Helth A, Lee M H, et al. Effect of cerium addition on microstructure and mechanical properties of high-strength Fe85-Cr4Mo8V2C1 cast steel [J]. Mater. Sci. Eng., 2016, 674A: 366
16 Garrison Jr W M, Maloney J L. Lanthanum additions and the toughness of ultra-high strength steels and the determination of appropriate lanthanum additions [J]. Mater. Sci. Eng., 2005, 403A(1-2) : 299
17 Fu H, Galindo-Nava E I, Rivera-Díaz-Del-Castillo P E J. Modelling and characterisation of stress-induced carbide precipitation in bearing steels under rolling contact fatigue [J]. Acta Mater., 2017, 128: 176
doi: 10.1016/j.actamat.2017.02.006
18 Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B(16) : 11169
19 Xu C, Chen Y, Gong T Z, et al. Ab initio study of local structures during cooling of liquid Fe-C and Fe-Cr-C alloys [J]. Comput. Mater. Sci., 2022, 212: 111572
doi: 10.1016/j.commatsci.2022.111572
20 Jablonka A, Harste K, Schwerdtfeger K. Thermomechanical properties of iron and iron-carbon alloys: density and thermal contraction [J]. Steel Res., 1991, 62(1): 24
doi: 10.1002/srin.1991.62.issue-1
21 Nose S. A unified formulation of the constant temperature molecular dynamics methods [J]. J. Chem. Phys., 1984, 81(1): 511
22 Hoover W G. Canonical dynamics: equilibrium phase-space distributions [J]. Phys. Rev., 1985, 31A(3) : 1695
23 Du N Y, Liu H H, Cao Y F, et al. Formation mechanism of MC and M2C primary carbides in as-cast M50 bearing steel [J]. Mater. Charact., 2021, 174: 111011
doi: 10.1016/j.matchar.2021.111011
24 Gao J Z, Fu P X, Liu H W, et al. Effects of rare earth on the microstructure and impact toughness of H13 steel [J]. Metals, 2015, 5(1): 383
doi: 10.3390/met5010383
25 Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Trans., 1970, 1(10): 2958
26 Ji Y P. Effects and mechanism of lanthanum/cerium on refinement of the primary δ-ferrite in solidification of steels [D]. Shanghai: Shanghai University, 2019
计云萍. 镧铈细化钢液凝固初生相δ铁素体的作用及机理 [D]. 上海: 上海大学, 2019
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!