|
|
Effect of Adding High Purity Rare Earth on Primary Carbide in M50 Steel |
DENG Chaohui1,2, CHEN Yun1( ), GONG Tongzhao1, XU Chuang1,2, CHEN Xingqiu1, FU Paixian1, LI Dianzhong1 |
1.Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
|
Cite this article:
DENG Chaohui, CHEN Yun, GONG Tongzhao, XU Chuang, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Adding High Purity Rare Earth on Primary Carbide in M50 Steel. Chinese Journal of Materials Research, 2023, 37(12): 915-923.
|
Abstract The large coarsened primary carbides precipitated from melt during solidification is a main factor that impacts the property of M50 bearing steel. In this paper, the effect of adding a relatively large amount of high purity rare earth on the precipitation of primary carbides is studied, including the La-Ce mischmetal and pure Ce. The characterized casting microstructure demonstrated that adding rare earth can effectively reduce and refine the primary carbides, especially for the ingot with addition of only high purity Ce. The mechanism of the effect of rare earth addition on the precipitation of primary carbides is then revealed. On the one hand, the added rare earth modified the traditional inclusions into the compound with rare earth, which can be the effective nucleation agent for δ-ferrite and austenite during solidification. And consequently, the dendritic grains and its secondary arm spacing can be refined, which is favor of impeding the diffusion of carbide formation elements in the liquid and then retards the carbide growth. On the other hand, the ab initio molecular dynamics simulations demonstrated that Ce can interact with other elements in the melt and lower the diffusion coefficients of Fe and C, and thus in turn lowers the growth rate of carbide and makes the primary carbides precipitated finer and more dispersive.
|
Received: 23 December 2022
|
|
Fund: National Key Research and Development Program of China(YFB3501503);Strategic Priority Research Program of the Chinese Academy of Sciences(XDC04040202);National Natural Science Foundation of China(52031013);China Postdoctoral Science Foundation(2021TQ0335) |
Corresponding Authors:
CHEN Yun, Tel: 15140153579, E-mail: Chenyun@imr.ac.cn
|
1 |
Guo J, Yang M S, Lu D H, et al. Rotational bending fatigue life and fatigue crack initiation mechanism of Cr4Mo4V bearing steel [J]. J. Mater. Eng, 2019, 47(7): 134
doi: 10.11868/j.issn.1001-4381.2017.000256
|
|
郭 军, 杨卯生, 卢德宏 等. Cr4Mo4V轴承钢旋转弯曲疲劳寿命及疲劳裂纹萌生机理 [J]. 材料工程, 2019, 47(7): 134
|
2 |
Guetard G, Toda-Caraballo I, Rivera-Díaz-del-Castillo P E J. Damage evolution around primary carbides under rolling contact fatigue in VIM-VAR M50 [J]. Int. J. Fatigue, 2016, 91: 59
doi: 10.1016/j.ijfatigue.2016.05.026
|
3 |
Nygaard J R, Rawson M, Danson P, et al. Bearing steel microstructures after aircraft gas turbine engine service [J]. Mater. Sci. Technol., 2014, 30: 1911
doi: 10.1179/1743284714Y.0000000548
|
4 |
Iqbal A, King J E. The role of primary carbides in fatigue crack propagation in aeroengine bearing steels [J]. Int. J. Fatigue, 1990, 12(4): 234
doi: 10.1016/0142-1123(90)90450-S
|
5 |
Li S S, Chen Y, Gong T Z, et al. Effect of cooling rate on the precipitation mechanism of primary carbide during solidification in high carbon-chromium bearing steel [J]. Acta Metall. Sin. 2022, 58(8): 1024
doi: 10.11900/0412.1961.2021.00024
|
|
李闪闪, 陈 云, 巩桐兆 等. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响 [J]. 金属学报, 2022, 58(8): 1024
doi: 10.11900/0412.1961.2021.00024
|
6 |
Gong T Z, Chen Y, Li S S, et al. Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy [J]. J. Mater. Sci. Technol, 2021, 74: 155
doi: 10.1016/j.jmst.2020.09.038
|
7 |
Bhadeshia H K D H. Steels for bearings [J]. Progress Mater. Sci., 2012, 57(2): 268
doi: 10.1016/j.pmatsci.2011.06.002
|
8 |
Zhou D G, Fu J, Wang P, et al. Formation mechanism of carbon segregation for bearing steel concasting billet and its influencing factors [J]. J. Univ. Sci. Technol. Beijing, 1999, 21(2): 131
|
|
周德光, 傅 杰, 王 平 等. 轴承钢连铸坯碳偏析的形成机理及影响因素 [J]. 北京科技大学学报, 1999, 21(2): 131
|
9 |
Guan J, Wang L Q, Zhang Z Q, et al. Fatigue crack nucleation and propagation at clustered metallic carbides in M50 bearing steel [J]. Tribol. Int., 2018, 119: 165
doi: 10.1016/j.triboint.2017.10.016
|
10 |
Kim K H, Bae C M. Reduction of segregation during casting of 100Cr6 bearing steel by cerium inoculation [J]. Met. Mater. Int., 2013, 19(3): 371
doi: 10.1007/s12540-013-3001-2
|
11 |
Li J, Ma J H, Song C J, et al. Columnar to equiaxed transition during solidification of small ingot by using electric current pulse [J]. J. Iron Steel Res. Int., 2009, 16(6): 7
|
12 |
Ma J H, Li J, Gao Y L, et al. Effect of peak value and discharge frequency of electric current pulse on solidification structure of Fe-1C-1.5Cr bearing steel [J]. Ironmak. Steelmak., 2009, 36(4): 286
doi: 10.1179/174328108X380654
|
13 |
Cheng Y, Xu Z S, Zhou Z, et al. Application of PMO solidification homogenization technology in continuous casting production of GCr15 bearing steel [J]. Shanghai Met., 2016, 38(4): 54
|
|
程 勇, 徐智帅, 周 湛 等. PMO凝固均质化技术在连铸GCr15轴承钢生产中的应用 [J]. 上海金属, 2016, 38(4): 54
|
14 |
Wu Y C, Jiang H W, Hu Y, et al. Effect of multi-direction forging on carbide evolution of M50 steel [J]. China Metall., 2020, 30(9):98
|
|
吴玉成, 姜宏伟, 胡 园 等. 多向锻造对M50钢一次碳化物破碎机制的影响 [J]. 中国冶金, 2020, 30(9): 98
|
15 |
Hufenbach J, Helth A, Lee M H, et al. Effect of cerium addition on microstructure and mechanical properties of high-strength Fe85-Cr4Mo8V2C1 cast steel [J]. Mater. Sci. Eng., 2016, 674A: 366
|
16 |
Garrison Jr W M, Maloney J L. Lanthanum additions and the toughness of ultra-high strength steels and the determination of appropriate lanthanum additions [J]. Mater. Sci. Eng., 2005, 403A(1-2) : 299
|
17 |
Fu H, Galindo-Nava E I, Rivera-Díaz-Del-Castillo P E J. Modelling and characterisation of stress-induced carbide precipitation in bearing steels under rolling contact fatigue [J]. Acta Mater., 2017, 128: 176
doi: 10.1016/j.actamat.2017.02.006
|
18 |
Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B(16) : 11169
|
19 |
Xu C, Chen Y, Gong T Z, et al. Ab initio study of local structures during cooling of liquid Fe-C and Fe-Cr-C alloys [J]. Comput. Mater. Sci., 2022, 212: 111572
doi: 10.1016/j.commatsci.2022.111572
|
20 |
Jablonka A, Harste K, Schwerdtfeger K. Thermomechanical properties of iron and iron-carbon alloys: density and thermal contraction [J]. Steel Res., 1991, 62(1): 24
doi: 10.1002/srin.1991.62.issue-1
|
21 |
Nose S. A unified formulation of the constant temperature molecular dynamics methods [J]. J. Chem. Phys., 1984, 81(1): 511
|
22 |
Hoover W G. Canonical dynamics: equilibrium phase-space distributions [J]. Phys. Rev., 1985, 31A(3) : 1695
|
23 |
Du N Y, Liu H H, Cao Y F, et al. Formation mechanism of MC and M2C primary carbides in as-cast M50 bearing steel [J]. Mater. Charact., 2021, 174: 111011
doi: 10.1016/j.matchar.2021.111011
|
24 |
Gao J Z, Fu P X, Liu H W, et al. Effects of rare earth on the microstructure and impact toughness of H13 steel [J]. Metals, 2015, 5(1): 383
doi: 10.3390/met5010383
|
25 |
Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Trans., 1970, 1(10): 2958
|
26 |
Ji Y P. Effects and mechanism of lanthanum/cerium on refinement of the primary δ-ferrite in solidification of steels [D]. Shanghai: Shanghai University, 2019
|
|
计云萍. 镧铈细化钢液凝固初生相δ铁素体的作用及机理 [D]. 上海: 上海大学, 2019
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|