|
|
Effect of Plasma Treatment on Interfacial Properties of CF/PI Composites at Elevated Temperatures |
DONG Zhexuan1, CHEN Ping1,2( ), LIU Xingda1 |
1.State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China 2.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology, Dalian 116024, China |
|
Cite this article:
DONG Zhexuan, CHEN Ping, LIU Xingda. Effect of Plasma Treatment on Interfacial Properties of CF/PI Composites at Elevated Temperatures. Chinese Journal of Materials Research, 2023, 37(12): 900-906.
|
Abstract The interfacial properties of modified carbon fiber reinforced polyimide resin matrix composites at 300℃ were studied by using argon inductively coupled radio-frequency plasma (ICP). Scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray electron spectroscopy (XPS) and other analytical test methods were used to systematically study the effects of argon plasma treatment time on the morphology, roughness and chemical composition of fiber surface before and after continuous carbon fiber modification, and the change law of the interface strength of Carbon fiber reinforced polyimide resin matrix (CF/PI) composites at 300℃. The results show that after the optimal time of argon plasma treatment for 7 min, the morphology of the carbon fiber surface becomes rough, the structural characteristics of unevenness appear, the surface oxygen element content increases from 11.43% to 16.28%, the polar functional group -C-O- content increases to 14.37%, and the wettability of the fiber surface increases. The interlayer shear strength (ILSS) value of carbon fiber and polyimide resin matrix increased from 76 MPa to 86.2 MPa at 300℃, indicating that argon plasma treatment can improve the interfacial properties of CF/PI composites at 300℃.
|
Received: 20 March 2023
|
|
Fund: National Key Research Program(2019-ZD-380-12);National Natural Science Foundation of China(51873109) |
Corresponding Authors:
CHEN Ping, Tel: (411)84986100, E-mail: pchen@dlut.edu.cn
|
1 |
Das T K, Ghosh P, Das N C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review [J]. Adv. Compos. Hybrid Mater., 2019, 2(2): 214
doi: 10.1007/s42114-018-0072-z
|
2 |
Fitzer E, Gkogkidis A, Heine M. Carbon fibres and their composites (a review) [J]. High Temp. - High Pressures, 1984, 16: 363
|
3 |
Ke H J, Zhao L W, Zhang X H, et al. Performance of high-temperature thermosetting polyimide composites modified with thermoplastic polyimide [J]. Polym. Test., 2020, 90: 106746
doi: 10.1016/j.polymertesting.2020.106746
|
4 |
Xiao T J, Gao S Q, Hu A J, et al. Thermosetting polyimides with improved impact toughness and excellent thermal and thermo-oxidative stability [J]. High Perform. Polym., 2001, 13(4): 287
doi: 10.1088/0954-0083/13/4/307
|
5 |
Liu L, Jia C Y, He J M, et al. Interfacial characterization, control and modification of carbon fiber reinforced polymer composites [J]. Compos. Sci. Technol., 2015, 121: 56
doi: 10.1016/j.compscitech.2015.08.002
|
6 |
Sharma M, Gao S L, Mäder E, et al. Carbon fiber surfaces and composite interphases [J]. Compos. Sci. Technol., 2014, 102: 35
doi: 10.1016/j.compscitech.2014.07.005
|
7 |
Liu Y W, Zhang Z Q, Huang Y D, et al. Effect of properties of carbon fiber surface modified by anodic treatment and a coupling agent on electron beam cured epoxy composites [J]. Chin. High Technol. Lett., 2002, 12(3): 38
|
|
刘玉文, 张志谦, 黄玉东 等. 电子束固化树脂基复合材料中碳纤维表面改性研究 [J]. 高技术通讯, 2000, 12(3): 38
|
8 |
Tiwari S, Bijwe J, Panier S. Polyetherimide composites with gamma irradiated carbon fabric: studies on abrasive wear [J]. Wear, 2011, 270(9-10): 688
doi: 10.1016/j.wear.2011.01.035
|
9 |
Vautard F, Ozcan S, Meyer H. Properties of thermo-chemically surface treated carbon fibers and of their epoxy and vinyl ester composites [J]. Composites, 2012, 43A(7) : 1120
|
10 |
Zhang X R, Zhao P, Pei X Q, et al. Flexural strength and tribological properties of rare earth treated short carbon fiber/polyimide composites [J]. Express Polym. Lett., 2007, 1(10): 667
doi: 10.3144/expresspolymlett.2007.91
|
11 |
Bauer M, Beratz S, Ruhland K, et al. Anodic oxidation of carbon fibers in alkaline and acidic electrolyte: quantification of surface functional groups by gas-phase derivatization [J]. Appl. Surf. Sci., 2020, 506: 144947
doi: 10.1016/j.apsusc.2019.144947
|
12 |
Qiu Y H, Wang Y J, Zhang C, et al. Atmospheric pressure helium+oxygen plasma treatment of ultrahigh modulus polyethylene fibers [J]. J. Adhes. Sci. Technol., 2002, 16(4): 449
doi: 10.1163/156856102760067217
|
13 |
Zang Z L, Tang G, Li J, et al. Mechanical property improvement of plasma treated carbon fiber-reinforced polyurethanes (PUR) composites with SiO2 filler [J]. Polym.-Plast. Technol. Eng., 2012, 51(7): 696
doi: 10.1080/03602559.2012.661900
|
14 |
Zhao Y, Zhang C Y, Shao X, et al. Effect of atmospheric plasma treatment on carbon fiber/epoxy interfacial adhesion [J]. J. Adhes. Sci. Technol., 2011, 25(20): 2897
doi: 10.1163/016942411X576572
|
15 |
Liu Z, Tang C, Chen P, et al. Modification of carbon fiber by air plasma and its adhesion with BMI resin [J]. RSC Adv., 2014, 4(51): 26881
doi: 10.1039/c4ra01835d
|
16 |
Wang Q, Chen P, Jia C X, et al. Effects of air dielectric barrier discharge plasma treatment time on surface properties of PBO fiber [J]. Appl. Surf. Sci., 2011, 258(1): 513
doi: 10.1016/j.apsusc.2011.08.078
|
17 |
Chen Y Z, Zhang C S, Chen P. Surface graft modification of domestic PBO fiber by atmospheric air plasma [J]. Chin. J. Mater. Res., 2021, 35(9): 641
doi: 10.11901/1005.3093.2020.562
|
|
陈怿咨, 张承双, 陈 平. 用常压空气等离子体对PBO纤维表面接枝改性 [J]. 材料研究学报, 2021, 35(9): 641
doi: 10.11901/1005.3093.2020.562
|
18 |
Liu Z, Chen B H, Chen P. Treatment of oxygen dielectric barrier discharge plasma on PBO fiber surface and influence on its BMI composites [J]. Chin. J. Mater. Res., 2020, 34(2): 109
|
|
刘 哲, 陈博涵, 陈 平. 氧气DBD等离子体处理PBO纤维表面及其对双马树脂基复合材料界面性能的影响 [J]. 材料研究学报, 2020, 34(2): 109
|
19 |
He M, Qi P F, Xu P, et al. Establishing a phthalocyanine-based crosslinking interphase enhances the interfacial performances of carbon fiber/epoxy composites at elevated temperatures [J]. Compos. Sci. Technol., 2019, 173: 24
doi: 10.1016/j.compscitech.2019.01.015
|
20 |
Kajjout M, Lemmouchi Y, Jama C, et al. Grafting of amine functions on cellulose acetate fibers by plasma processing [J]. React. Funct. Polym., 2019, 134: 40
doi: 10.1016/j.reactfunctpolym.2018.11.004
|
21 |
Lu C, Chen P, Yu Q, et al. Interfacial adhesion of plasma-treated carbon fiber/poly(phthalazinone ether sulfone ketone) composite [J]. J. Appl. Polym. Sci., 2007, 106(3): 1733
doi: 10.1002/app.v106:3
|
22 |
Ma K M, Chen P, Wang B C, et al. A study of the effect of oxygen plasma treatment on the interfacial properties of carbon fiber/epoxy composites [J]. J. Appl. Polym. Sci., 2010, 118(3): 1606
doi: 10.1002/app.v118:3
|
23 |
Zhang C S, Chen P, Sun B L, et al. Surface analysis of oxygen plasma treated poly(p-phenylene benzobisoxazole) fibers [J]. Appl. Surf. Sci., 2008, 254(18): 5776
doi: 10.1016/j.apsusc.2008.03.082
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|