Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (12): 900-906    DOI: 10.11901/1005.3093.2023.189
ARTICLES Current Issue | Archive | Adv Search |
Effect of Plasma Treatment on Interfacial Properties of CF/PI Composites at Elevated Temperatures
DONG Zhexuan1, CHEN Ping1,2(), LIU Xingda1
1.State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
2.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology, Dalian 116024, China
Cite this article: 

DONG Zhexuan, CHEN Ping, LIU Xingda. Effect of Plasma Treatment on Interfacial Properties of CF/PI Composites at Elevated Temperatures. Chinese Journal of Materials Research, 2023, 37(12): 900-906.

Download:  HTML  PDF(5318KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The interfacial properties of modified carbon fiber reinforced polyimide resin matrix composites at 300℃ were studied by using argon inductively coupled radio-frequency plasma (ICP). Scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray electron spectroscopy (XPS) and other analytical test methods were used to systematically study the effects of argon plasma treatment time on the morphology, roughness and chemical composition of fiber surface before and after continuous carbon fiber modification, and the change law of the interface strength of Carbon fiber reinforced polyimide resin matrix (CF/PI) composites at 300℃. The results show that after the optimal time of argon plasma treatment for 7 min, the morphology of the carbon fiber surface becomes rough, the structural characteristics of unevenness appear, the surface oxygen element content increases from 11.43% to 16.28%, the polar functional group -C-O- content increases to 14.37%, and the wettability of the fiber surface increases. The interlayer shear strength (ILSS) value of carbon fiber and polyimide resin matrix increased from 76 MPa to 86.2 MPa at 300℃, indicating that argon plasma treatment can improve the interfacial properties of CF/PI composites at 300℃.

Key words:  composites      plasma      carbon fiber      interfacial strength      polyimide composites     
Received:  20 March 2023     
ZTFLH:  TB332  
Fund: National Key Research Program(2019-ZD-380-12);National Natural Science Foundation of China(51873109)
Corresponding Authors:  CHEN Ping, Tel: (411)84986100, E-mail: pchen@dlut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.189     OR     https://www.cjmr.org/EN/Y2023/V37/I12/900

Fig.1  SEM images of the carbon fiber treated for different time by argon plasma (a) untreated; (b) 5 min; (c) 7 min; (d) 15 min
Fig.2  AFM images of the carbon fiber treated for different time by argon plasma untreated; (b) 5 min; (c) 7 min; (d) 15 min
Treatment time / minRa / nmRq / nm
046.754.0
5155.1178.0
7159.4181.8
15198.3230.5
Table 1  Roughness of carbon fiber surface treated for different time by argon plasma
Treatment time / minElement content / %, atomic fraction
CNO
085.323.2611.43
581.534.0214.45
780.363.3616.28
1582.013.1814.81
Table 2  Relative elemental concentration of the carbon fiber surface treated by argon plasma for different time
Fig.3  XPS Cls spectra of the carbon fiber surface treated for different time by argon plasma (a) untreated; (b) 5 min plasma treatment; (c) 7 min plasma treatment; (d) 15 min plasma treatment
Fig.4  Contact angle of carbon fiber treated for different time by argon plasma
Treatment time / minConcentration of correlative functional groups / %
-C-C--C-N--C-O--O-C=O
064.5618.469.687.30
562.2115.9612.389.45
760.4016.3714.378.86
1563.7317.2611.287.73
Table 3  Concentration of functional groups on the carbon fiber surface treated for different time by argon plasma
Fig.5  Single fiber tensile strength of carbon fiber treated for different time by argon plasma
Fig.6  ILSS of CF/PI composites treated for different time by argon plasma at 300℃
Treatment time / minτ1/ MPaτ2/ MPaRetention rate / %
089.7776.084.66
7108.7886.279.24
Table 4  Retention rate of ILSS of CF/PI composites
Fig.7  Water absorption rate of CF/PI composites before and after air plasma treatment
1 Das T K, Ghosh P, Das N C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review [J]. Adv. Compos. Hybrid Mater., 2019, 2(2): 214
doi: 10.1007/s42114-018-0072-z
2 Fitzer E, Gkogkidis A, Heine M. Carbon fibres and their composites (a review) [J]. High Temp. - High Pressures, 1984, 16: 363
3 Ke H J, Zhao L W, Zhang X H, et al. Performance of high-temperature thermosetting polyimide composites modified with thermoplastic polyimide [J]. Polym. Test., 2020, 90: 106746
doi: 10.1016/j.polymertesting.2020.106746
4 Xiao T J, Gao S Q, Hu A J, et al. Thermosetting polyimides with improved impact toughness and excellent thermal and thermo-oxidative stability [J]. High Perform. Polym., 2001, 13(4): 287
doi: 10.1088/0954-0083/13/4/307
5 Liu L, Jia C Y, He J M, et al. Interfacial characterization, control and modification of carbon fiber reinforced polymer composites [J]. Compos. Sci. Technol., 2015, 121: 56
doi: 10.1016/j.compscitech.2015.08.002
6 Sharma M, Gao S L, Mäder E, et al. Carbon fiber surfaces and composite interphases [J]. Compos. Sci. Technol., 2014, 102: 35
doi: 10.1016/j.compscitech.2014.07.005
7 Liu Y W, Zhang Z Q, Huang Y D, et al. Effect of properties of carbon fiber surface modified by anodic treatment and a coupling agent on electron beam cured epoxy composites [J]. Chin. High Technol. Lett., 2002, 12(3): 38
刘玉文, 张志谦, 黄玉东 等. 电子束固化树脂基复合材料中碳纤维表面改性研究 [J]. 高技术通讯, 2000, 12(3): 38
8 Tiwari S, Bijwe J, Panier S. Polyetherimide composites with gamma irradiated carbon fabric: studies on abrasive wear [J]. Wear, 2011, 270(9-10): 688
doi: 10.1016/j.wear.2011.01.035
9 Vautard F, Ozcan S, Meyer H. Properties of thermo-chemically surface treated carbon fibers and of their epoxy and vinyl ester composites [J]. Composites, 2012, 43A(7) : 1120
10 Zhang X R, Zhao P, Pei X Q, et al. Flexural strength and tribological properties of rare earth treated short carbon fiber/polyimide composites [J]. Express Polym. Lett., 2007, 1(10): 667
doi: 10.3144/expresspolymlett.2007.91
11 Bauer M, Beratz S, Ruhland K, et al. Anodic oxidation of carbon fibers in alkaline and acidic electrolyte: quantification of surface functional groups by gas-phase derivatization [J]. Appl. Surf. Sci., 2020, 506: 144947
doi: 10.1016/j.apsusc.2019.144947
12 Qiu Y H, Wang Y J, Zhang C, et al. Atmospheric pressure helium+oxygen plasma treatment of ultrahigh modulus polyethylene fibers [J]. J. Adhes. Sci. Technol., 2002, 16(4): 449
doi: 10.1163/156856102760067217
13 Zang Z L, Tang G, Li J, et al. Mechanical property improvement of plasma treated carbon fiber-reinforced polyurethanes (PUR) composites with SiO2 filler [J]. Polym.-Plast. Technol. Eng., 2012, 51(7): 696
doi: 10.1080/03602559.2012.661900
14 Zhao Y, Zhang C Y, Shao X, et al. Effect of atmospheric plasma treatment on carbon fiber/epoxy interfacial adhesion [J]. J. Adhes. Sci. Technol., 2011, 25(20): 2897
doi: 10.1163/016942411X576572
15 Liu Z, Tang C, Chen P, et al. Modification of carbon fiber by air plasma and its adhesion with BMI resin [J]. RSC Adv., 2014, 4(51): 26881
doi: 10.1039/c4ra01835d
16 Wang Q, Chen P, Jia C X, et al. Effects of air dielectric barrier discharge plasma treatment time on surface properties of PBO fiber [J]. Appl. Surf. Sci., 2011, 258(1): 513
doi: 10.1016/j.apsusc.2011.08.078
17 Chen Y Z, Zhang C S, Chen P. Surface graft modification of domestic PBO fiber by atmospheric air plasma [J]. Chin. J. Mater. Res., 2021, 35(9): 641
doi: 10.11901/1005.3093.2020.562
陈怿咨, 张承双, 陈 平. 用常压空气等离子体对PBO纤维表面接枝改性 [J]. 材料研究学报, 2021, 35(9): 641
doi: 10.11901/1005.3093.2020.562
18 Liu Z, Chen B H, Chen P. Treatment of oxygen dielectric barrier discharge plasma on PBO fiber surface and influence on its BMI composites [J]. Chin. J. Mater. Res., 2020, 34(2): 109
刘 哲, 陈博涵, 陈 平. 氧气DBD等离子体处理PBO纤维表面及其对双马树脂基复合材料界面性能的影响 [J]. 材料研究学报, 2020, 34(2): 109
19 He M, Qi P F, Xu P, et al. Establishing a phthalocyanine-based crosslinking interphase enhances the interfacial performances of carbon fiber/epoxy composites at elevated temperatures [J]. Compos. Sci. Technol., 2019, 173: 24
doi: 10.1016/j.compscitech.2019.01.015
20 Kajjout M, Lemmouchi Y, Jama C, et al. Grafting of amine functions on cellulose acetate fibers by plasma processing [J]. React. Funct. Polym., 2019, 134: 40
doi: 10.1016/j.reactfunctpolym.2018.11.004
21 Lu C, Chen P, Yu Q, et al. Interfacial adhesion of plasma-treated carbon fiber/poly(phthalazinone ether sulfone ketone) composite [J]. J. Appl. Polym. Sci., 2007, 106(3): 1733
doi: 10.1002/app.v106:3
22 Ma K M, Chen P, Wang B C, et al. A study of the effect of oxygen plasma treatment on the interfacial properties of carbon fiber/epoxy composites [J]. J. Appl. Polym. Sci., 2010, 118(3): 1606
doi: 10.1002/app.v118:3
23 Zhang C S, Chen P, Sun B L, et al. Surface analysis of oxygen plasma treated poly(p-phenylene benzobisoxazole) fibers [J]. Appl. Surf. Sci., 2008, 254(18): 5776
doi: 10.1016/j.apsusc.2008.03.082
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[5] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[6] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[7] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[8] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[9] XU Wenyu, SUN Jiawen, ZHU Yaofeng. Preparation and Performance of Self-assembled Carbon/Epoxy Composite Microwave Absorbing Coating[J]. 材料研究学报, 2023, 37(12): 952-960.
[10] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[11] QI Yunchao, FANG Guodong, ZHOU Zhengong, LIANG Jun. In-plane Tensile Strength for Needle-punched Composites Prepared by Different Needling Processes[J]. 材料研究学报, 2023, 37(1): 21-28.
[12] ZHANG Peng, HUANG Dong, ZHANG Fuquan, YE Chong, WU Xiao, WU Huang. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage[J]. 材料研究学报, 2022, 36(8): 579-590.
[13] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[14] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[15] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
No Suggested Reading articles found!