Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (1): 21-28    DOI: 10.11901/1005.3093.2022.171
ARTICLES Current Issue | Archive | Adv Search |
In-plane Tensile Strength for Needle-punched Composites Prepared by Different Needling Processes
QI Yunchao1, FANG Guodong2(), ZHOU Zhengong2, LIANG Jun3()
1.AVIC Chengdu Aircraft Industrial (Group) CO., LTD, Chengdu 610091, China
2.National Key Laboratory of Special Environmental Composite Technology, Harbin Institute of Technology, Harbin 150080, China
3.School of Astronautics, Beijing Institute of Technology, Beijing 100081, China
Cite this article: 

QI Yunchao, FANG Guodong, ZHOU Zhengong, LIANG Jun. In-plane Tensile Strength for Needle-punched Composites Prepared by Different Needling Processes. Chinese Journal of Materials Research, 2023, 37(1): 21-28.

Download:  HTML  PDF(8596KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The in-plane tensile strength of six carbon fiber reinforced resin-based composites with different needle punching processes decreases with the increase of needle punching density and needle punching depth. The fiber fracture at the needle punching regions can make the defects instability propagation in the material, which can induce the tensile failure of material. Based on the in-plane tensile test results and fiber cumulative damage theory, a theoretical model for analyzing in-plane tensile strength of needle punched composites are established by introducing fiber volume reduction coefficient. The prediction results of this model are consistent with the experimental results. It is found that the number of broken fiber clusters is related to the volume reduction coefficient. The model can be used to predict the in-plane tensile strength of composites with different needling processes, and to guide the design of the needle punching preforms.

Key words:  composite      carbon fiber needled      needling processes      tensile strength      volume reduction coefficient      theoretical model     
Received:  25 March 2022     
ZTFLH:  TB332  
Fund: National Natural Science Foundation of China(11732002);National Natural Science Foundation of China(12090034);Natural Science Foundation of Heilongjiang Province(YQ2021A004)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.171     OR     https://www.cjmr.org/EN/Y2023/V37/I1/21

Fig.1  Schematic diagram of needle-punched preform
Process idNeedling depth/mmNeedling density /needles·cm-2Interlayer density (layers)/cmTensile strength /MPaCV
1132213.5179.26.43%
2133513.5165.09.68%
3152213.5131.98.74%
4153513.5123.010.4%
5182214.272.27.30%
6183515.262.910.3%
Table 1  Process and tensile strength of needle-punched composites
Fig.2  Size and shape of tensile specimen
Fig.3  Tensile test of needle-punched composites (a) and fracture of tensile specimen (b)
Fig.4  Stress-strain curves of needle-punched composites with different processes
Fig.5  SEM failure morphology of tensile specimen (a, b) and fracture of process 1 specimen (c) and fracture of process 5 specimen (d)
Fig.6  Two different needling areas (a) fiber deflection area and (b) fiber fracture area
Fig.7  Thickness direction equivalent length of deflected fiber
Fig.8  Model of needle punched composite
Process idVolume reduction coefficientαCV
10.2316.60%
20.2537.52%
30.2946.82%
40.3128.04%
50.3816.95%
60.417.00%
Table 2  Material volume reduction coefficients of different needling processes
Fig.9  Model prediction strength of different i values
Fig.10  Calculated values and experimental values of different process models (a) and Relative errors between calculated values and experimental values (b)
Fig.11  Fiber fracture of non-woven fabrics without damage (a) and with process damage (b)
Fig.12  Relationship between the number of broken fibers and volume reduction coefficient
1 Yan Y E, Huang Q Z. Application and development of C/C composite material for aviation brake [J]. New Carbon Material, 1996(3): 13
颜月娥, 黄启忠. 航空刹车用C/C复合材料的应用与发展 [J]. 新型炭材料, 1996(3): 13
2 Lacombe A, Pichon T, Lacoste M. High temperature composite nozzle extensions, a mature and efficient technology to improve upper stage Liquid Rocket Engine performance [J]. AIAA 2007-5470
3 Liang J, Fang G D. Analysis Method for Mechanical Properties of Three Dimensional Braided Composites [M]. Harbin: Harbin Institute of Technology Press, 2014
梁 军, 方国东. 三维编织复合材料力学性能分析方法 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2014
4 Zhang X H, Li H J, Hao Z B, et al. Influence of needle-punching process parameters on mechanical properties of C/C reinforced carbon fiber net [J]. Journal of Inorganic Materials, 2007, 22(5): 963
张晓虎, 李贺军, 郝志彪 等. 针刺工艺参数对炭布网胎增强C/C材料力学性能的影响 [J]. 无机材料学报, 2007, 22(5): 963
doi: 10.3724/SP.J.1077.2007.00963
5 Ji A L, Cui H, Li H J, et al. Performance analysis of a carbon cloth/felt layer needled perform [J]. New Carbon Material, 2011, 26(2): 109
doi: 10.1016/S1872-5805(11)60070-X
嵇阿琳, 崔 红, 李贺军 等. 炭布叠层针刺预制体性能分析 [J]. 新型炭材料, 2011, 26(2): 109
6 Li D S, Luo G, Yao Q Q, et al. High temperature compression properties and failure mechanism of 3D needle-punched carbon/carbon composites [J]. Materials Science & Engineering A, 2015, 621: 105
7 Nie J, Xu Y, Zhang L, et al. Microstructure, thermophysical, and ablative performances of a 3D needled C/C-SiC composite [J]. International Journal of Applied Ceramic Technology, 2010, 7(2): 197
doi: 10.1111/j.1744-7402.2008.02341.x
8 Fan Kai. Structure and properties of three-dimensional needle-punched carbon felt reinforced resin-based carbon composites [D]. Wuxi: Jiangnan University, 2019
樊 凯. 三维针刺碳毡增强树脂炭复合材料的结构及性能研究 [D]. 无锡: 江南大学, 2019
9 Xu H J, Zhang L T, Cheng L F. The yarn size dependence of tensile and in-plane shear properties of three-dimensional needled textile reinforced ceramic matrix composites [J]. Materials and Design, 2015, 67: 428
doi: 10.1016/j.matdes.2014.11.061
10 Xie J B, Fang G D, Chen Z, et al. Effect of needling parameters on the effective properties of 3D needled C/C-SiC composites [J]. Composites Science and Technology, 2015, 117: 69
doi: 10.1016/j.compscitech.2015.06.003
11 Xie J B, Fang G D, Chen Z, et al. Numerical and experimental studies on scattered mechanical properties for 3D needled C/C-SiC composites [J]. Composite Structures, 2018, 192: 545
doi: 10.1016/j.compstruct.2018.03.056
12 Jia Y Z. Research on meso-structure characterization and mechanical behavior simulation of needled carbon/carbon composites [D]. Wuhan: Huazhong University of Science & Technology, 2017
贾永臻. 针刺C/C复合材料细观结构表征及力学行为仿真研究 [D]. 武汉: 华中科技大学, 2017
13 Qi Y C, Fang G D, Wang Z W, et al. An improved analytical method for calculating stiffness of 3D needled composites with different needle-punched processes [J]. Composite Structures, 2020, 237(4): 111938
doi: 10.1016/j.compstruct.2020.111938
14 Chen Zhen. Biaxial failure mechanism and high tenperature tensile properties of needled C/C-SiC composite [D]. Harbin: Harbin Institute of Technology, 2018
陈 振. 针刺C/C-SiC复合材料双轴失效机制及高温拉伸性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018
15 Zou J J. Study on mechanical properties of carbon/carbon composite structure based on needled technology [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019
邹佳俊. 基于针刺工艺的碳/碳复合材料结构力学性能研究 [D]. 南京: 南京航空航天大学, 2019
16 Cheng H X, Liu Y Y, Qiao Z W, et al. Effects of 3D needling process parameters on mechanical properties of carbon fiber composite [J]. Fiberglass, 2020, (4): 13
程海霞, 刘延友, 乔志炜 等. 三维针刺工艺参数对碳纤维复合材料力学性能的影响 [J]. 玻璃纤维, 2020, (4): 13
17 Gundel D B, Wawner F E. Experimental and theoretical assessment of the longitudinal tensile strength of unidirectional Sic-fiber/titanium-matrix composites [J]. Composites Science and Technology, 1997, 57: 471
doi: 10.1016/S0266-3538(96)00163-7
18 Ibnabdeljalil M, Curtin W A. Strength and reliability of notched fiber-reinforced composites [J]. Acta Materialia, 1997, 45(9): 3641
doi: 10.1016/S1359-6454(97)00056-6
19 Deng C B, Qian Z M, Duan W J. Experimental determination of interfacial shear strength and fiber strength distribution parameters of fiber resin [J]. Experimental mechanics, 1997, 12(2): 204
邓传斌, 钱振明, 段文江. 纤维树脂界面剪切强度及纤维强度分布参数的实验测定 [J]. 实验力学, 1997, 12(2): 204
20 Zhang X, Wang Y M, Yang Q, et al. Study on tensile behavior of SiC_f/TC17 composites [J]. Acta Metallurgica Sinica, 2015, 51(9): 1025
张 旭, 王玉敏, 杨 青 等. SiC_f/TC17复合材料拉伸行为研究 [J]. 金属学报, 2015, 51(9): 1025
21 Li J K, Yang Y Q, Yuan M N, et al. Effect of properties of SiC fibers on longitudinal tensile behavior of SiCf/Ti-6A1-4V composites [J]. Trans. Nonferrous Met. Soc. China, 2008, 18: 523
doi: 10.1016/S1003-6326(08)60092-8
22 Hui C Y, Shia D, Berglund L A. Estimation of interfacial shear strength: an application of a new statistical theory for single fiber composite test [J]. Composites Science and Technology, 1999, 59: 2037
doi: 10.1016/S0266-3538(99)00064-0
23 Wang Z K, Xian G J, Li H. Study on tensile properties of domestic carbon fiber [J]. Industrial Buildings, 2013, 43(6): 1
王自柯, 咸贵军, 李 惠. 国产碳纤维拉伸性能研究 [J]. 工业建筑, 2013, 43(6): 1
24 Zhang J C, Zhou Z L. Study on the reasons of crack and its influence on the molded phenolic composite parts [J]. Journal of Materials Science & Engineering, 2007, 25(3): 453
张建川, 周祝林. 酚醛模压复合材料制品裂纹产生原因及对其质量的影响 [J]. 材料科学与工程学报, 2007, 25(3): 453
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!