Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (1): 29-38    DOI: 10.11901/1005.3093.2022.261
ARTICLES Current Issue | Archive | Adv Search |
Effect ofγ'-phase on Tensile and Stress Rupture Deformation Behavior of High W-containing Ni-based Superalloys
WEI Lin1, ZHOU Sigeng2, Naicheng SHENG2(), YU Jinjiang2, HOU Guichen2, WANG Biao1, QUAN Jia1, ZHOU Yizhou2, SUN Xiaofeng2, KANG Yong1
1.AECC Sichuan Gas Turbine Research Establishment, Chengdu 610500, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

WEI Lin, ZHOU Sigeng, Naicheng SHENG, YU Jinjiang, HOU Guichen, WANG Biao, QUAN Jia, ZHOU Yizhou, SUN Xiaofeng, KANG Yong. Effect ofγ'-phase on Tensile and Stress Rupture Deformation Behavior of High W-containing Ni-based Superalloys. Chinese Journal of Materials Research, 2023, 37(1): 29-38.

Download:  HTML  PDF(37949KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-based superalloys with high W content are widely used to fabricate gas turbine blades because of their high temperature mechanical properties and lower cost. The γ΄-phase is the most important strengthening phase in Ni-based superalloys, which affects the deformation behavior during tensile process. Although the influence of γ΄-phase has been studied extensively, there are few investigations on the deformation mechanism of K416B superalloy with different morphologies of γ΄-phase. Hence, the effect of γ΄-phase morphology on the mechanical behavior of K416B superalloy was assessed in the present work. The average size of γ΄-phase scattered in the as-cast alloy was about 200 nm, which could impede the mobility of dislocations in the matrix so that the yield strength increased. After heat treatment, two sizes of γ΄-phase precipitated from the matrix, the size of them were 1 μm and 100 nm respectively. During room temperature tensile deformation of the alloy after being subjected to heat treatment, dislocations could fully share the primary γ΄-phase particles, and even detour the secondary γ΄-phase particles per Orowan mechanism, therewith the yield strength of the alloy decreased. The life of as-cast K416B is longer than that of the heat-treatment counterpart. It can be interpreted that the secondary γ΄-phase particles coarsened rapidly during the durable test. Additionally, the precipitation of nano W6C particles along the γ-γ΄ interface depleted tungsten in the alloy, which reduced the mismatch between γ and γ΄ phases, resulting in the damage of the durable life of K416B alloy.

Key words:  metallic materials      K416B alloy      γ? precipitation      tensile behavior      duration      dislocation     
Received:  07 May 2022     
ZTFLH:  TG132.3+2  
Fund: National Natural Science Foundation of China(51971214);Natural Science Foundation of Liaoning Province(2020-MS-014)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.261     OR     https://www.cjmr.org/EN/Y2023/V37/I1/29

Fig.1  Schematic diagram of mechanical test samples (a) tensile (b) durable (unit: mm)
Fig.2  OM micrographs of as-cast K416B alloy (a) low magnification, (b) high magnification
Fig.3  DSC results of as-cast K416B (a) heating, (b) cooling
Fig.4  Heat treatment process
Fig.5  Morphologies of γ? phase in K416B (a) as-cast state, (b) heat treatment
Rp0.2 /MPaRm/MPaA/%Z/%
As-cast93610544.010.0
Heat-treatment77510406.511.0
Table 1  Tensile properties of K416B alloy
Fig.6  Stress-strain curves of K416B alloy with different microstructures of γ?
Fig.7  Fracture morphologies of K416B alloy with different microstructures of γ? (a, b) as-cast state; (c, d) heat treatment
Fig.8  SEM images of K416B alloy with different microstructures of γ? after fracture (a) as-cast state, (b) heat treatment
Fig.9  TEM images of as-cast K416B alloy after tensile fracture
Fig.10  STEM-EDS images of heat-treatment K416B alloy
Fig.11  TEM images of heat-treatment K416B alloy after tensile fracture
Fig.12  Durable rupture curves of K416B alloys with different morphologies under the condition of 975℃/235 MPa
Fig.13  Cross-sectional view of the alloys under the condition of 975℃/235 MPa (a, b) as-cast state; (c, d) heat treatment
Fig.14  Dislocation structures of K416B after rupture under 975℃/235 MPa
Fig.15  STEM bright field image (a) and corresponding elemental mapping (b) of K416B after creep rupture under 975℃/235 MPa
1 Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 19
2 Su X L, Xu Q Y, Wang R N, et al. Microstructural evolution and compositional homogenization of a low Re-bearing Ni-based single crystal superalloy during through progression of heat treatment [J]. Mater Des., 2018, 141: 296
doi: 10.1016/j.matdes.2017.12.020
3 Long H B, Mao S C, Liu Y N, et al. Microstructural and compositional design of Ni-based single crystalline superalloys―A review [J]. J. Alloys Compd., 2018, 743: 203
doi: 10.1016/j.jallcom.2018.01.224
4 Gong L, Chen B, Du Z H, et al. Investigation of solidification and segregation characteristics of cast Ni-base superalloy K417G [J]. J. Mater. Sci. Technol., 2018, 34(3): 541
doi: 10.1016/j.jmst.2016.11.009
5 Wang H F, Su H J, Zhang J, et al. Investigation on solidification path of Ni-based single crystal superalloys with different Ru contents [J]. Mater. Charact., 2017, 130: 211
doi: 10.1016/j.matchar.2017.06.017
6 MacKay R A, Gabb T P, Garg A, et al. Influence of composition on microstructural parameters of single crystal nickel-base superalloys [J]. Mater. Charact., 2012, 70: 83
doi: 10.1016/j.matchar.2012.05.001
7 Xie J, Yu J J, Sun X F, et al. Carbide evolution behavior of K416B as-cast Ni-based superalloy with high W content during high temperature creep [J]. Acta Metall. Sin., 2015, 51(4): 458
doi: 10.11900/0412.1961.2014.00543
谢 君, 于金江, 孙晓峰 等. 高钨K416B铸造镍基合金高温蠕变期间碳化物演化行为 [J]. 金属学报, 2015, 51(4): 458
8 Zhou T J, Feng W, Zhao H B, et al. Coupling effects of tungsten and molybdenum on microstructure and stress-rupture properties of a nickel-base cast superalloy [J]. Prog. Nat. Sci.: Mater. Int., 2018, 28: 45
doi: 10.1016/j.pnsc.2017.12.003
9 Roebuck B, Cox D, Reed R. The temperature dependence of γ′ volume fraction in a Ni-based single crystal superalloy from resistivity measurements [J]. Scripta Mater., 2001, 44: 917
doi: 10.1016/S1359-6462(00)00662-X
10 Harte A, Atkinson M, Smith A, et al. The effect of solid solution and gamma prime on the deformation modes in Ni-based superalloys [J]. Acta Mater., 2020, 194: 257
doi: 10.1016/j.actamat.2020.04.004
11 Wang X G, Liu J L, Jin T, et al. Tensile behaviors and deformation mechanisms of a nickel-base single crystal superalloy at different temperatures [J]. Mater. Sci. Eng., 2014, 598A: 154
12 Cui L Q, Su H H, Yu J J, et al. Temperature dependence of tensile properties and deformation behaviors of nickel-base superalloy M951G [J]. Mater. Sci. Eng., 2017, 696A: 323
13 Zhou T J, Ding H S, Ma X P, et al. Effect of precipitates on high-temperature tensile strength of a high W-content cast Ni-based superalloy [J]. J. Alloys Compd., 2019, 797: 486
doi: 10.1016/j.jallcom.2019.05.085
14 Xie J, Yu J J, Sun X F, et al. Thermodynamics analysis and precipitation behavior of fine carbide in K416B Ni-based superalloy with high W content during creep [J]. Trans. Nonferrous Met. Soc. China, 2015, 25(5): 1478
doi: 10.1016/S1003-6326(15)63748-7
15 Cormier J, Cailletaud G. Constitutive modeling of the creep behavior of single crystal superalloys under non-isothermal conditions inducing phase transformations [J]. Mater. Sci. Eng., 2010, 527A(23) : 6300
16 Guo X T, Zheng W W, An W R, et al. High temperature creep behavior of a cast polycrystalline nickel-based superalloy K465 under thermal cycling conditions [J]. Materialia, 2020, 14: 100913
doi: 10.1016/j.mtla.2020.100913
17 Li Q, Xie J, Yu J J, et al. Solidification behavior and segregation characteristics of high W-content cast Ni-Based superalloy K416B [J]. J. Alloys Compd., 2021, 854: 156027
doi: 10.1016/j.jallcom.2020.156027
18 Hua H Y, Xie J, Shu D L, et al. Influence of W content on the microstructure of nickel base superalloy with high W content [J]. Acta Metall. Sin., 2020, 56(2): 161
doi: 10.11900/0412.1961.2019.00193
华涵钰, 谢 君, 舒德龙 等. W含量对一种高W镍基高温合金显微组织的影响 [J]. 金属学报, 2020, 56(2): 161
doi: 10.11900/0412.1961.2019.00193
19 Xie J, Yu J J, Sun X F, et al. Influence of temperature on tensile behaviors of K416B Ni-based superalloy with high W content [J]. Acta Metall. Sin., 2015, 51(8): 943
谢 君, 于金江, 孙晓峰等 温度对高W含量K 416 B镍基合金拉伸行为的影响 [J]. 金属学报, 2015, 51(8): 943
20 Chen M K, Xie J, Shu D L, et al. Effect of long-term thermal exposures on tensile behaviors of K416B nickel-based superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33(12): 1699
doi: 10.1007/s40195-020-01075-3
21 Zhou S G, Sheng N C, Sun S J, et al. Microstructural evolution of a high W content Ni-based superalloy at γ' sub-solvus temperatures [J]. Met. Mater Int., 2023, 29: 27
doi: 10.1007/s12540-022-01216-6
22 Singh A R P, Nag S, Chattopadhyay S, et al. Mechanisms related to different generations of γ' precipitation during continuous cooling of a nickel base superalloy [J]. Acta Mater., 2013, 61(1): 280
doi: 10.1016/j.actamat.2012.09.058
23 Du B N, Hu Z Y, Sheng L Y, et al. Tensile, creep behavior and microstructure evolution of an as-cast Ni-based K417G polycrystalline superalloy [J]. J. Mater. Sci. Technol., 2018, 34(10): 1805
doi: 10.1016/j.jmst.2018.02.007
24 Qin S Y, Hao J Q, Yan L G, et al. Ultrafast solution treatment to improve the comprehensive mechanical properties of superalloy by pulsed electric current [J]. Scripta Mater., 2021, 199: 113879
doi: 10.1016/j.scriptamat.2021.113879
25 Raynor D, Silcock J M. Strengthening mechanisms in γ' precipitating alloys [J]. Met. Sci. J., 1970, 4: 121
doi: 10.1007/BF00550653
26 Xia W S, Zhao X B, Yue Q Z, et al. Formative and controlled mechanisms of nano-sized γ′ precipitates with local phase-transition within dislocation networks of nickel-based single crystal superalloys [J]. Acta Mater., 2021, 206: 116653
doi: 10.1016/j.actamat.2021.116653
27 Kontis P, Li Z M, Collins D M, et al. The effect of chromium and cobalt segregation at dislocations on nickel-based superalloys [J]. Scripta Mater., 2018, 145: 76
doi: 10.1016/j.scriptamat.2017.10.005
28 Xie J, Tian S G, Zhou X M, et al. Influence of heat treatment regimes on microstructure and creep properties of FGH95 nickel base superalloy [J]. Mater. Sci. Eng., 2012, 538A: 306
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!