Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (8): 571-578    DOI: 10.11901/1005.3093.2021.379
ARTICLES Current Issue | Archive | Adv Search |
Influence of Shape Factor on Mechanical and Electrical Properties of Cu-W Composites with Micro-oriented Structure
HAN Ying1(), LI Sida1, CAO Yundong1, LI Shujun2(), LU Yanjun3, SUN Baoyu4
1.School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.KINGSEMI Co. Ltd., Shenyang 110168, China
4.Shenyang General Magnetic Co. Ltd., Shenyang 110159, China
Cite this article: 

HAN Ying, LI Sida, CAO Yundong, LI Shujun, LU Yanjun, SUN Baoyu. Influence of Shape Factor on Mechanical and Electrical Properties of Cu-W Composites with Micro-oriented Structure. Chinese Journal of Materials Research, 2022, 36(8): 571-578.

Download:  HTML  PDF(7438KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Electrical contact Cu-W composites with three different micro-directional structure was designed, and characterized in terms of different shape factors. Then the influence of shape factors on their electrical conductivity and mechanical properties was investigated. Based on effective medium equation (GEM), conductive channel theory and simulation calculation, the current density distribution, and its relationship with the shape factor of composites with different skeleton structures were acquired. The results show that the closer the shape factor F to 1 is, the easier the formation of the cluster-like conductive channels are, thereby the better the conductivity is. The deformation characteristics of different composite materials were simulated and analyzed according to the Mises yield criterion, while the relationship between mechanical properties and shape factor was proposed, that is, with the increase of roundness of shape factor, the stability of force conduction element was improved. The larger the roundness of the shape factor is, the less deformation of the force conduction element is and the better the mechanical properties are. In a word, the comprehensive properties of the electrical contact Cu-W composite material can be further optimized by adjusting appropriately its conductivity and mechanical properties.

Key words:  composite      micro-oriented structure      electrical and mechanical properties      shape factor     
Received:  24 June 2021     
ZTFLH:  TG146.1  
Fund: National Natural Science Foundation of China(51977132);Natural Science Foundation of Liaoning Province(2019-MS-249);Natural Science Foundation of Liaoning Province(LACT-007);Opening Project of National Key Laboratory of Shock Wave and Detonation Physics(6142A03203002)
About author:  LI Shujun, Tel: 13840185937, E-mail: shjli@imr.ac.cn
HAN Ying, Tel: 13478250188, E-mail: hany_dq@sut.edu.cn;

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.379     OR     https://www.cjmr.org/EN/Y2022/V36/I8/571

Fig.1  Arrange orderly of Cu-W composites with triangular, quadrilateral and hexagonal conductive elements
Fig.2  Stress-strain curve of pure Cu (a) and pure W (b)
Fig.3  Current density diagram of triangular, quadrilateral and hexagonal conducting cells
Fig.4  Current trend diagram of triangle, quadrilateral and hexagon conducting unit (overall and partial enlarged)
Fig.5  Current density integral of different internal struc-tures
Fig.6  Simplified resistance unit model
Fig.7  Cell resistance models of three kinds
Fig.8  Schematic diagram of three structural shape factors per unit area
Fig.9  Stress-strain cloud diagram of triangular, quadrilateral and hexagon force conduction micro element Cu-W composite
400 MPaTriangleQuadrilateralHexagon
Stress/MPa1.792×1031.600×1031.491×103
Strain/mm1.416×10-21.353×10-21.312×10-2
Table 1  400 MPa stress and strain
1 Liu L H, Zhuang J W, Jiang Z X, et al. Present situation and prospect of contacts of hybrid DC vacuum circuit breakers [J]. Proc. CSEE, 2014, 34: 3504
刘路辉, 庄劲武, 江壮贤 等. 混合型直流真空断路器触头技术——现状与发展 [J]. 中国电机工程学报, 2014, 34: 3504
2 Ding J X, Tian W B, Wang D D, et al. Arc erosion and degradation mechanism of Ag/Ti2AlC composite [J]. Acta Metall. Sin., 2019, 55: 627
丁健翔, 田无边, 汪丹丹 等. Ag/Ti2AlC复合材料的电弧侵蚀及退化机理 [J]. 金属学报, 2019, 55: 627
doi: 10.11900/0412.1961.2018.00534
3 Yang X H, Fan Z K, Liang S H, et al. Effects of Y2O3 on properties of Cu-W electrical contact materials [J]. Chin. J. Mater. Res., 2007, 21: 414
杨晓红, 范志康, 梁淑华 等. 添加Y2O3对CuW触头材料性能的影响 [J]. 材料研究学报, 2007, 21: 414
4 Chen A Q, Huo W T, Dong L L, et al. Recent advance of copper tungsten composite materials [J]. Mater. China, 2021, 40: 152
陈安琦, 霍望图, 董龙龙 等. 先进铜钨复合材料研究进展 [J]. 中国材料进展, 2021, 40: 152
5 Shi L, Dong B, Yin H Q, et al. Effects of Arc ablation on microstructure and properties of CuW alloy for high voltage electrical apparatus [J]. Foundry Technol., 2018, 39: 1850
石 磊, 董 博, 尹洪泉 等. 电弧烧蚀对高压电器用铜钨合金组织和性能的影响 [J]. 铸造技术, 2018, 39: 1850
6 Luo C S, Luo H, Zeng X G, et al. Microstructure and properties of welding joint of copper-tungsten alloy and low carbon steel [J]. Rare Metal Mater. Eng., 2015, 44: 2322
罗昌森, 罗 宏, 曾宪光 等. 铜钨合金与低碳钢的焊接组织与性能 [J]. 稀有金属材料与工程, 2015, 44: 2322
7 Wang Y M, Zhang R. Experimental study on arc erosion of Cu-W alloy for high voltage electrical switch contact [J]. Foundry Technol., 2018, 39: 2217
王颜明, 张 然. 高压电器开关触头铜钨合金电弧侵蚀试验研究 [J]. 铸造技术, 2018, 39: 2217
8 Han C Y, Wang Z B, Wang Z, et al. Development of contact material and its performance testing technology [J]. Electr. Eng. Mater., 2019, (1): 27
韩春阳, 王召斌, 王 占 等. 触头材料及其性能测试技术概述 [J]. 电工材料, 2019, (1): 27
9 Ma R J. Progress in the research and application of silver-based electrical contact material [J]. Rare Met. Cem. Carbides, 2008, 36(4): 28
马荣骏. 银基电接触材料研究与应用的进展 [J]. 稀有金属与硬质合金, 2008, 36(4): 28
10 Xian A P, Zhu Y X. The development of manufacture processing for cu-cr contact alloy [J]. Acta Metall. Sin., 2003, 39: 225
冼爱平, 朱耀宵. Cu-Cr触头合金制备技术的发展 [J]. 金属学报, 2003, 39: 225
11 Lin Z J, Sun X D, Liu S H, et al. Effect of SnO2 particle size on properties of Ag-SnO2 electrical contact materials prepared by the reductive precipitation method [J]. Adv. Mater. Res., 2014, 936: 459
12 Cao W C, Liang S H. Effect of Fe addition on microstructure and mechanical properties of CuW contact [J]. High Voltage Appar., 2014, 50(11): 7
曹伟产, 梁淑华. Fe添加对CuW触头材料组织结构及力学性能影响的研究 [J]. 高压电器, 2014, 50(11): 7
13 Cao W C, Liang S H. Study on the effect of heat treatment technology on the microstructure and properties of CuW contact material [J]. High Voltage Appar., 2014, 50(10): 25
曹伟产, 梁淑华. 热处理工艺对CuW触头材料组织及性能影响的研究 [J]. 高压电器, 2014, 50(10): 25
14 Chen Z W. Effects of reinforcing particle shape and distribution on the mechanical properties of silver electrical contact composites [D]. Shenyang: Northeastern University, 2015
陈治威. 增强颗粒形状与分布对银基电触头复合材料力学性能影响的模拟研究 [D]. 沈阳: 东北大学, 2015
15 Huang X Y. Study on mechanical properties of parti-cle reinforced composites based on ABAQUS [J]. Ju She, 2019, (4): 38
黄啸宇. 基于ABAQUS的颗粒增强复合材料力学性能研究 [J]. 居舍, 2019, (4): 38
16 Xu Y J, Wu P W, Xu L, et al. Study on mechanical properties of particle reinforced composite materials containing voids [J]. J. Zhejiang Univ. Technol., 2016, 44: 564
许杨剑, 武鹏伟, 许 雷 等. 含孔洞的颗粒增强复合材料力学性能研究 [J]. 浙江工业大学学报, 2016, 44: 564
17 Jiang P K, Wang Z G, Wang S T, et al. Dielectric enhancement of non spherical conductive particles and insulator Composites [J]. Acta Mater. Compos. Sin., 1997, 14(3): 92
江平开, 王宗光, 王寿泰 等. 非球形导电粒子与绝缘体复合材料的介电增强研究 [J]. 复合材料学报, 1997, 14(3): 92
18 Xie B C, He Q, Shen Y G. The character of dielectric and spectrum in the semiconductor/insulator composite [J]. Acta Sin. Quantum Opt., 2006, 12: 95
谢秉川, 何 勤, 沈廷根. 半导体/绝缘体复合材料的介电特性和光谱特性 [J]. 量子光学学报, 2006, 12: 95
19 Luo L, Xia T D, Qiu H M. Effect of particle shape on shear modulus of sand in K0 condition [J]. Rock Soil Mech., 2018, 39: 3695
罗 岚, 夏唐代, 仇浩淼. K0条件下颗粒形状特征对砂土剪切模量的影响 [J]. 岩土力学, 2018, 39: 3695
20 Liu X Y, Zou D G, Liu J M, et al. A gradation-dependent particle shape factor for characterizing small-strain shear modulus of sand-gravel mixtures [J]. Trans. Geotechn., 2021, 28: 100548
21 Wang C W. The research on effect of reinforcement particle characteristics on the mechanical properties of SiCp/Al composite materials [D]. Xi'an: Chang'an University, 2018
王春伟. 增强颗粒特征对SiCp/Al复合材料力学性能的影响研究 [D]. 西安: 长安大学, 2018
22 Li Y Y, Huang X Q. Static characteristics for metal-rubber structure with different shape factor [J]. Chin. J. Appl. Mech., 2009, 26: 82
李宇燕, 黄协清. 形状因子变化时金属橡胶结构的静态力学性能分析 [J]. 应用力学学报, 2009, 26: 82
23 Zhang X Y, Cai Y Y, Wang Z B, et al. Fractal breakage and particle shape analysis for coral sand under high-pressure and one-dimensional creep conditions [J]. Rock Soil Mech., 2018, 39: 1573
张小燕, 蔡燕燕, 王振波 等. 珊瑚砂高压力下一维蠕变分形破碎及颗粒形状分析 [J]. 岩土力学, 2018, 39: 1573
24 Han Y, Wang H S, Cao Y D, et al. Mechanical and electrical properties of Cu-W composites with micro-oriented structure [J]. Acta Metall. Sin., 2021, 57(8): 1009
韩 颖, 王宏双, 曹云东 等. 微观定向结构Cu-W复合材料的力学与电学性能 [J]. 金属学报, 2021, 57(8): 1009
25 Wang W, Zhang K, Xu S H, et al. Research on hoisting scheme for structural construction of large span arch pipe truss structure with inverted triangular section [J]. Construc. Technol., 2015, 44(21): 120
王 韦, 张 凯, 徐淑华 等. 倒三角形断面大跨拱式管桁架结构吊装方案研究 [J]. 施工技术, 2015, 44(21): 120
26 Chen X W, Ma B, Chen Y. Crashworthiness analysis and structural optimization of the bionic square-bamboo battery box's thin-walled tube [J]. J. Mach. Design, 2021, 38(1): 78
陈晓薇, 马 彬, 陈 勇. 仿方竹电池箱体薄壁管结构优化及耐撞性分析 [J]. 机械设计, 2021, 38(1): 78
27 Gao Y H. Design and application of bionic flow channel based on hexagonal structure [D]. Changchun: Jilin University, 2019
高一航. 基于六边形的仿生流道结构设计及其应用 [D]. 长春: 吉林大学, 2019
28 Li Z B, Chen Q S. A theoretical research on electrical resistivity of composite contact materials [J]. Proc. CSEE, 1996, 16: 185
李震彪, 陈青松. 电触头复合材料电阻率的理论研究 [J]. 中国电机工程学报, 1996, 16: 185
29 Saad M, Sadoudi A, Rondet E, et al. Morphological characterization of wheat powders, how to characterize the shape of particles? [J]. J. Food Eng., 2011, 102: 293
doi: 10.1016/j.jfoodeng.2010.08.020
30 Gibson L J, Ashby M F, Schajer G S, et al. The mechanics of two-dimensional cellular materials [J]. Proc. Roy. Soc., 1982, 382A: 25
31 Li J B, Ma F Y, Xiu H J, et al. Characterization of the relationship between MCC particle morphology and powder flowability by shape factor [J]. China Pulp Paper, 2019, 38(12): 1
李金宝, 马飞燕, 修慧娟 等. 形状因子表征MCC颗粒形貌与粉体流动性的关系 [J]. 中国造纸, 2019, 38(12): 1
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!