Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (8): 561-570    DOI: 10.11901/1005.3093.2021.196
ARTICLES Current Issue | Archive | Adv Search |
Strain Hardening Behavior of Polygonal Ferrite and Acicular Ferrite Dual-phase Pipeline Steel
XUN Yu1,2, YAN Wei1, SHI Xianbo1(), ZHANG Chuanguo3, SHAN Yiyin1, YANG Ke1, REN Yi4
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230000, China
3.Baosteel Central Research Institute, Shanghai 201900, China
4.State Key Laboratory of Metal Materials and Application for Marine Equipment, Anshan 1140009, China
Cite this article: 

XUN Yu, YAN Wei, SHI Xianbo, ZHANG Chuanguo, SHAN Yiyin, YANG Ke, REN Yi. Strain Hardening Behavior of Polygonal Ferrite and Acicular Ferrite Dual-phase Pipeline Steel. Chinese Journal of Materials Research, 2022, 36(8): 561-570.

Download:  HTML  PDF(4596KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Four polygonal ferrite/acicular ferrite (PF/AF) dual-phase steels with different volume fractions of polygonal ferrite were processed by heat treatment process. The effect of soft phase (polygonal ferrite) ratio on the effective grain size and geometrically necessary dislocation density (GND) was analyzed by electron backscattered diffraction (EBSD). While the relationship between stress ratio and strain hardening exponent (n), as well as the tensile deformation behavior and the relevant strain hardening mechanism of dual-phase pipeline steels of PF/AF dual-phase steels with different PF volume fractions were assessed by means of empirical formulas of the so called Hollomon analysis and modified C-J analysis. The results show that the strain hardening ability of PF/AF dual-phase steel is almost independent of stress ratio, while the strain hardening index has a specific linear relationship with the uniform elongation. With the increase of volume fraction of polygonal ferrite, the necking point moves backward and the strain hardening behavior changes from two-stage to three-stage process. The change of volume fraction of polygonal ferrite has a significant effect on the strain hardening ability of the first and second stages.

Key words:  metallic materials      polygonal ferrite/acicular ferrite (PF/AF) dual-phase steel      volume fraction of polygonal ferrite      modified C-J analysis      strain hardening behavior     
Received:  22 March 2021     
ZTFLH:  TG430.40  
Fund: National Key R & D Program of China(2018YFC0310300);State Key Laboratory of Metal Material for Marine Equipment and Application(SKLMEA-K201901);State Key Laboratory of Metal Material for Marine Equipment and Application(SKLMEA-K202002)
About author:  SHI Xianbo, Tel: (024)83973136, E-mail: xbshi@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.196     OR     https://www.cjmr.org/EN/Y2022/V36/I8/561

Fig.1  Schematic diagram of heat treatment process
Fig.2  Microstructures of experimental steels after different heat treatment (a) 1#, (b) 2#, (c) 3#, (d) 4#
Fig.3  TEM micrographs of (a) AF in 1# steel and (b) PF in 4# steel
Fig.4  inverse pole figure (IPF) for 1# (a)、2# (b) and 4# (c) sample; Misorientation distribution maps of grain boundary for 1# (d)、2# (e) and 4# (f) sample; geometrically necessary dislocations (GND) densities for 1# (g)、2# (h) and 4# (i) sample; (j) the average grain size of 1#、2# and 4# sample; (k) the frequency of LAGBs and HAGBs at 1#、2# and 4# sample; (l) the frequency of GND at 1#、2# and 4# sample
Steels

RP0.5

/MPa

Rm

/MPa

UEL

/%

TEL

/%

Yield ration
1#6427465.217.50.860.152
2#37758416.134.00.650.186
3#36356118.336.00.650.200
4#33452919.538.00.630.220
Table 1  Mechanical properties of experimental steels
Fig.5  Engineering stress-strain curves of experimental steels
Fig.6  Effect of volume fraction of PF on engineering stress of experimental steels
Fig.7  Effect of volume fraction of PF on stress ratio and yield ratio of experimental steels
Fig.8  Relationships between yield ratio, stress ratio, elongation and strain hardening exponent of experimental steels (a) yield ratio vsn value; (b) stress ratio vsn value; (c) elongation vsn value
Fig.9  Hollomon analysis curves of experimental steels
Fig.10  True stress and work-hardening rate as a function of true strain
Fig.11  Modified C-J analysis curves of experimental steels

Experimental

Steel

Stage ⅠStage ⅡStage ⅢEngineering strain/%
1-m1/m1-m1/m1-m1/mTransition strainUEL

εt1

(Stage Ⅰ~Ⅱ)

εt2

(Stage Ⅱ~Ⅲ)

1#//-9.210.098-21.40.045/1.55.2
2#-1.290.437-5.500.154-11.70.0791.711.616.1
3#-1.750.364-5.010.166-11.90.0783.713.618.3
4#-2.280.305-5.360.157-9.570.0954.814.619.5
Table 3  Strain hardening capability of each stages and transition strain (εt) of experimental steel in modified C-J analysis
1 Wang W, Shan Y Y, Yang K. Study of high strength pipeline steels with different microstructures [J]. Mater. Sci. Eng., 2009, 502A: 38
2 Zuo X R, Zhou Z Y. Study of pipeline steels with acicular ferrite microstructure and ferrite-bainite dual-phase microstructure [J]. Mater. Res., 2015, 18: 36
doi: 10.1590/1516-1439.256813
3 Shi X B, Yan W, Wang W, et al. Effect of microstructure on hydrogen induced cracking behavior of a high deformability pipeline steel [J]. J. Iron Steel Res. Int., 2015, 22: 937
doi: 10.1016/S1006-706X(15)30093-5
4 Kim Y M, Kim S K, Lim Y J, et al. Effect of microstructure on the yield ratio and low temperature toughness of linepipe steels [J]. ISIJ Int., 2002, 42: 1571
doi: 10.2355/isijinternational.42.1571
5 Zhang H M, Wang H B, Liu Z Y, et al. Study on the grain refinement mechanism of low carbon micro-alloyed steels for line-pipe applications [J]. Trans. Mater. Heat Treat., 2006, 27(6): 99
张红梅, 王宏斌, 刘振宇 等. X70微合金管线钢组织中针状铁素体细化机制的研究 [J]. 材料热处理学报, 2006, 27(6): 99
6 Wang M M, Gao X H, Zhu C L, et al. Microstructure, mechanical properties, and strain-hardening behavior of V-N microalloyed pipeline steels consisted of polygonal ferrite and acicular ferrite [J]. Steel Res. Int., 2021, 92: 2000404
doi: 10.1002/srin.202000404
7 Shi L, Yan Z S, Liu Y C, et al. Improved toughness and ductility in ferrite/acicular ferrite dual-phase steel through intercritical heat treatment [J]. Mater. Sci. Eng., 2014, 590A: 7
8 Tang C J, Shang C J, Guan H L, et al. Strain hardening behavior and stress ratio of high deformability pipeline steel with ferrite/bainite multi-phase microstructure [J]. Chin. J. Mater. Res., 2016, 30: 409
汤忖江, 尚成嘉, 关海龙 等. 大变形管线钢中F/B多相组织应变硬化行为和应力比研究 [J]. 材料研究学报, 2016, 30: 409
9 Tang C J. Study on mechaincal behavior of high-strength low-alloy multi-phase steel [D]. Beijing: University of Science and Technology Beijing, 2016
汤忖江. 多相高强度低合金钢的力学行为研究 [D]. 北京: 北京科技大学, 2016
10 Ishikawa N, Yasuda K, Sueyoshi H, et al. Microscopic deformation and strain hardening analysis of ferrite–bainite dual-phase steels using micro-grid method [J]. Acta Mater., 2015, 97: 257
doi: 10.1016/j.actamat.2015.06.037
11 Kumar A, Singh S B, Ray K K. Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels [J]. Mater. Sci. Eng., 2008, 474A: 270
12 Kalashami A G, Kermanpur A, Ghassemali E, et al. Correlation of microstructure and strain hardening behavior in the ultrafine-grained Nb-bearing dual phase steels [J]. Mater. Sci. Eng., 2016, 678A: 215
13 Ji L K, Li H L, Zhao W Z, et al. Microstructure and strain-hardening performance analysis for X70 high strain line pipe [J]. J. Xi'an Jiaotong Univ., 2012, 46(9): 108
吉玲康, 李鹤林, 赵文轸 等. X70抗大变形管线钢管的组织结构和形变硬化性能分析 [J]. 西安交通大学学报, 2012, 46(9): 108
14 Ji L K, Feng H, Zhang J M, et al. Strain-hardening properties of high grade line pipes [J]. Mater. Sci. Forum, 2018, 913: 331
doi: 10.4028/www.scientific.net/MSF.913.331
15 Das S, Hofmann F, Tarleton E. Consistent determination of geometrically necessary dislocation density from simulations and experiments [J]. Int. J. Plast., 2018, 109: 18
doi: 10.1016/j.ijplas.2018.05.001
16 Saeidi N, Ashrafizadeh F, Niroumand B, et al. EBSD study of micromechanisms involved in high deformation ability of DP steels [J]. Mater. Des., 2015, 87: 130
doi: 10.1016/j.matdes.2015.07.134
17 Tang C J, Shang C J, Xia D X, et al. Characterization parameters for strain hardening behavior of ferrite/bainite multi-phase steel [J]. J. Iron Steel Res., 2019, 31: 553
汤忖江, 尚成嘉, 夏佃秀 等. 铁素体/贝氏体多相组织钢硬化行为表征参数 [J]. 钢铁研究学报, 2019, 31: 553
18 Das D, Chattopadhyay P P. Influence of martensite morphology on the work-hardening behavior of high strength ferrite–martensite dual-phase steel [J]. J. Mater. Sci., 2009, 44: 2957
doi: 10.1007/s10853-009-3392-0
19 Alibeyki M, Mirzadeh H, Najafi M. Fine-grained dual phase steel via intercritical annealing of cold-rolled martensite [J]. Vacuum, 2018, 155: 147
doi: 10.1016/j.vacuum.2018.06.003
20 Nikkhah S, Mirzadeh H, Zamani M. Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing [J]. Mater. Chem. Phys., 2019, 230: 1
doi: 10.1016/j.matchemphys.2019.03.053
21 Mazaheri Y, Jahanara A H, Sheikhi M, et al. High strength-elongation balance in ultrafine grained ferrite-martensite dual phase steels developed by thermomechanical processing [J]. Mater. Sci. Eng., 2019, 761A: 138021
22 Pakzaman H R, Banadkouki S S G. Effect of martensite volume fraction on abnormal work hardening behavior of a low carbon low alloy ferrite-martensite dual-phase steel [J]. Int. J. Mater. Res., 2020, 111: 983
doi: 10.3139/146.111967
23 Soliman M, Palkowski H. Strain hardening dependence on the structure in dual-phase steels [J]. Steel Res. Int., 2021, 92: 2000518
doi: 10.1002/srin.202000518
24 Mazaheri Y, Jahanara A H, Sheikhi M, et al. On the simultaneous improving of strength and elongation in dual phase steels via cold rolling [J]. Metals, 2020, 10: 1676
doi: 10.3390/met10121676
25 Jiang Z H, Guan Z Z, Lian J S. The relationship between ductility and material parameters for dual-phase steel [J]. J. Mater. Sci., 1993, 28: 1814
doi: 10.1007/BF00595750
26 Mirzadeh H, Alibeyki M, Najafi M. Unraveling the initial microstructure effects on mechanical properties and work-hardening capacity of dual-phase steel [J]. Metall. Mater. Trans., 2017, 48A: 4565
27 Movahed P, Kolahgar S, Marashi S P H, et al. The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite-martensite dual phase steel sheets [J]. Mater. Sci. Eng., 2009, 518A: 1
28 Lian J, Jiang Z, Liu J. Theoretical model for the tensile work hardening behaviour of dual-phase steel [J]. Mater. Sci. Eng., 1991, 147A: 55
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!