|
|
Strain Hardening Behavior of Polygonal Ferrite and Acicular Ferrite Dual-phase Pipeline Steel |
XUN Yu1,2, YAN Wei1, SHI Xianbo1( ), ZHANG Chuanguo3, SHAN Yiyin1, YANG Ke1, REN Yi4 |
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230000, China 3.Baosteel Central Research Institute, Shanghai 201900, China 4.State Key Laboratory of Metal Materials and Application for Marine Equipment, Anshan 1140009, China |
|
Cite this article:
XUN Yu, YAN Wei, SHI Xianbo, ZHANG Chuanguo, SHAN Yiyin, YANG Ke, REN Yi. Strain Hardening Behavior of Polygonal Ferrite and Acicular Ferrite Dual-phase Pipeline Steel. Chinese Journal of Materials Research, 2022, 36(8): 561-570.
|
Abstract Four polygonal ferrite/acicular ferrite (PF/AF) dual-phase steels with different volume fractions of polygonal ferrite were processed by heat treatment process. The effect of soft phase (polygonal ferrite) ratio on the effective grain size and geometrically necessary dislocation density (GND) was analyzed by electron backscattered diffraction (EBSD). While the relationship between stress ratio and strain hardening exponent (n), as well as the tensile deformation behavior and the relevant strain hardening mechanism of dual-phase pipeline steels of PF/AF dual-phase steels with different PF volume fractions were assessed by means of empirical formulas of the so called Hollomon analysis and modified C-J analysis. The results show that the strain hardening ability of PF/AF dual-phase steel is almost independent of stress ratio, while the strain hardening index has a specific linear relationship with the uniform elongation. With the increase of volume fraction of polygonal ferrite, the necking point moves backward and the strain hardening behavior changes from two-stage to three-stage process. The change of volume fraction of polygonal ferrite has a significant effect on the strain hardening ability of the first and second stages.
|
Received: 22 March 2021
|
|
Fund: National Key R & D Program of China(2018YFC0310300);State Key Laboratory of Metal Material for Marine Equipment and Application(SKLMEA-K201901);State Key Laboratory of Metal Material for Marine Equipment and Application(SKLMEA-K202002) |
About author: SHI Xianbo, Tel: (024)83973136, E-mail: xbshi@imr.ac.cn
|
1 |
Wang W, Shan Y Y, Yang K. Study of high strength pipeline steels with different microstructures [J]. Mater. Sci. Eng., 2009, 502A: 38
|
2 |
Zuo X R, Zhou Z Y. Study of pipeline steels with acicular ferrite microstructure and ferrite-bainite dual-phase microstructure [J]. Mater. Res., 2015, 18: 36
doi: 10.1590/1516-1439.256813
|
3 |
Shi X B, Yan W, Wang W, et al. Effect of microstructure on hydrogen induced cracking behavior of a high deformability pipeline steel [J]. J. Iron Steel Res. Int., 2015, 22: 937
doi: 10.1016/S1006-706X(15)30093-5
|
4 |
Kim Y M, Kim S K, Lim Y J, et al. Effect of microstructure on the yield ratio and low temperature toughness of linepipe steels [J]. ISIJ Int., 2002, 42: 1571
doi: 10.2355/isijinternational.42.1571
|
5 |
Zhang H M, Wang H B, Liu Z Y, et al. Study on the grain refinement mechanism of low carbon micro-alloyed steels for line-pipe applications [J]. Trans. Mater. Heat Treat., 2006, 27(6): 99
|
|
张红梅, 王宏斌, 刘振宇 等. X70微合金管线钢组织中针状铁素体细化机制的研究 [J]. 材料热处理学报, 2006, 27(6): 99
|
6 |
Wang M M, Gao X H, Zhu C L, et al. Microstructure, mechanical properties, and strain-hardening behavior of V-N microalloyed pipeline steels consisted of polygonal ferrite and acicular ferrite [J]. Steel Res. Int., 2021, 92: 2000404
doi: 10.1002/srin.202000404
|
7 |
Shi L, Yan Z S, Liu Y C, et al. Improved toughness and ductility in ferrite/acicular ferrite dual-phase steel through intercritical heat treatment [J]. Mater. Sci. Eng., 2014, 590A: 7
|
8 |
Tang C J, Shang C J, Guan H L, et al. Strain hardening behavior and stress ratio of high deformability pipeline steel with ferrite/bainite multi-phase microstructure [J]. Chin. J. Mater. Res., 2016, 30: 409
|
|
汤忖江, 尚成嘉, 关海龙 等. 大变形管线钢中F/B多相组织应变硬化行为和应力比研究 [J]. 材料研究学报, 2016, 30: 409
|
9 |
Tang C J. Study on mechaincal behavior of high-strength low-alloy multi-phase steel [D]. Beijing: University of Science and Technology Beijing, 2016
|
|
汤忖江. 多相高强度低合金钢的力学行为研究 [D]. 北京: 北京科技大学, 2016
|
10 |
Ishikawa N, Yasuda K, Sueyoshi H, et al. Microscopic deformation and strain hardening analysis of ferrite–bainite dual-phase steels using micro-grid method [J]. Acta Mater., 2015, 97: 257
doi: 10.1016/j.actamat.2015.06.037
|
11 |
Kumar A, Singh S B, Ray K K. Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels [J]. Mater. Sci. Eng., 2008, 474A: 270
|
12 |
Kalashami A G, Kermanpur A, Ghassemali E, et al. Correlation of microstructure and strain hardening behavior in the ultrafine-grained Nb-bearing dual phase steels [J]. Mater. Sci. Eng., 2016, 678A: 215
|
13 |
Ji L K, Li H L, Zhao W Z, et al. Microstructure and strain-hardening performance analysis for X70 high strain line pipe [J]. J. Xi'an Jiaotong Univ., 2012, 46(9): 108
|
|
吉玲康, 李鹤林, 赵文轸 等. X70抗大变形管线钢管的组织结构和形变硬化性能分析 [J]. 西安交通大学学报, 2012, 46(9): 108
|
14 |
Ji L K, Feng H, Zhang J M, et al. Strain-hardening properties of high grade line pipes [J]. Mater. Sci. Forum, 2018, 913: 331
doi: 10.4028/www.scientific.net/MSF.913.331
|
15 |
Das S, Hofmann F, Tarleton E. Consistent determination of geometrically necessary dislocation density from simulations and experiments [J]. Int. J. Plast., 2018, 109: 18
doi: 10.1016/j.ijplas.2018.05.001
|
16 |
Saeidi N, Ashrafizadeh F, Niroumand B, et al. EBSD study of micromechanisms involved in high deformation ability of DP steels [J]. Mater. Des., 2015, 87: 130
doi: 10.1016/j.matdes.2015.07.134
|
17 |
Tang C J, Shang C J, Xia D X, et al. Characterization parameters for strain hardening behavior of ferrite/bainite multi-phase steel [J]. J. Iron Steel Res., 2019, 31: 553
|
|
汤忖江, 尚成嘉, 夏佃秀 等. 铁素体/贝氏体多相组织钢硬化行为表征参数 [J]. 钢铁研究学报, 2019, 31: 553
|
18 |
Das D, Chattopadhyay P P. Influence of martensite morphology on the work-hardening behavior of high strength ferrite–martensite dual-phase steel [J]. J. Mater. Sci., 2009, 44: 2957
doi: 10.1007/s10853-009-3392-0
|
19 |
Alibeyki M, Mirzadeh H, Najafi M. Fine-grained dual phase steel via intercritical annealing of cold-rolled martensite [J]. Vacuum, 2018, 155: 147
doi: 10.1016/j.vacuum.2018.06.003
|
20 |
Nikkhah S, Mirzadeh H, Zamani M. Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing [J]. Mater. Chem. Phys., 2019, 230: 1
doi: 10.1016/j.matchemphys.2019.03.053
|
21 |
Mazaheri Y, Jahanara A H, Sheikhi M, et al. High strength-elongation balance in ultrafine grained ferrite-martensite dual phase steels developed by thermomechanical processing [J]. Mater. Sci. Eng., 2019, 761A: 138021
|
22 |
Pakzaman H R, Banadkouki S S G. Effect of martensite volume fraction on abnormal work hardening behavior of a low carbon low alloy ferrite-martensite dual-phase steel [J]. Int. J. Mater. Res., 2020, 111: 983
doi: 10.3139/146.111967
|
23 |
Soliman M, Palkowski H. Strain hardening dependence on the structure in dual-phase steels [J]. Steel Res. Int., 2021, 92: 2000518
doi: 10.1002/srin.202000518
|
24 |
Mazaheri Y, Jahanara A H, Sheikhi M, et al. On the simultaneous improving of strength and elongation in dual phase steels via cold rolling [J]. Metals, 2020, 10: 1676
doi: 10.3390/met10121676
|
25 |
Jiang Z H, Guan Z Z, Lian J S. The relationship between ductility and material parameters for dual-phase steel [J]. J. Mater. Sci., 1993, 28: 1814
doi: 10.1007/BF00595750
|
26 |
Mirzadeh H, Alibeyki M, Najafi M. Unraveling the initial microstructure effects on mechanical properties and work-hardening capacity of dual-phase steel [J]. Metall. Mater. Trans., 2017, 48A: 4565
|
27 |
Movahed P, Kolahgar S, Marashi S P H, et al. The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite-martensite dual phase steel sheets [J]. Mater. Sci. Eng., 2009, 518A: 1
|
28 |
Lian J, Jiang Z, Liu J. Theoretical model for the tensile work hardening behaviour of dual-phase steel [J]. Mater. Sci. Eng., 1991, 147A: 55
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|