Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (6): 443-453    DOI: 10.11901/1005.3093.2022.062
ARTICLES Current Issue | Archive | Adv Search |
Effect of Vacuum Graded Quenching on Microstructure and Mechanical Properties of 8Cr4Mo4V Steel
YU Xingfu1(), WANG Shengyu2, WANG Yupeng3, YANG Shuxin3, YANG Yu4, SU Yong5, FENG Xiaochuan3
1.School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
2.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
3.AECC Harbin Bearing Co. Ltd., Harbin 150000, China
4.Key Laboratory of Power Transmission Technology on Aero-Engine, Aero Engine Corporation of China, Shenyang 110015, China
5.School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
Cite this article: 

YU Xingfu, WANG Shengyu, WANG Yupeng, YANG Shuxin, YANG Yu, SU Yong, FENG Xiaochuan. Effect of Vacuum Graded Quenching on Microstructure and Mechanical Properties of 8Cr4Mo4V Steel. Chinese Journal of Materials Research, 2022, 36(6): 443-453.

Download:  HTML  PDF(18971KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The 8Cr4Mo4V steel for aviation bearing manufacturing was subjected to graded quenching at different temperatures after being vacuum heat-treated. The effect of vacuum graded quenching on microstructure and mechanical properties of 8Cr4Mo4V steel were investigated by scanning electron microscope, XRD, Rockwell hardness tester, impact tester and rotational bending fatigue tester. Results show that the graded quenching 8Cr4Mo4V steel presents a microstructure of lower bainite, martensite/retained austenite and carbides. With the increase of graded quenching temperature, the number of precipitated carbides in the quenched and tempered steel increases, while the amount of retained austenite decreases. When the graded quenching temperature is 580℃, the bainite volume fraction of the quenched steel reaches a maximum of 13.87%, and the residual austenite volume fraction is 28.59%, and then after tempering, the precipitated carbides volume fraction and the Rockwell hardness reach the maximum namely 4.37% and 62.38 HRC respectively, in comparison to other desired graded quenching temperatures. The vacuum graded quenching can improve the comprehensive mechanical properties of 8Cr4Mo4V steel. In other word, the 580℃×10 min vacuum graded quenching treated 8Cr4Mo4V steel presents impact toughness and fatigue limit of rotational bending 23.3% and 110 MPa respectively higher than those of the traditional vacuum quenching treated ones.

Key words:  metallic materials      8Cr4Mo4V steel      vacuum graded quenching      bainite      mechanical properties     
Received:  18 January 2022     
ZTFLH:  TG142.1  
Fund: Fund of Liaoning Provincial Department of Education(LJ2019014)
About author:  YU Xingfu, Tel: 13604072060, E-mail: yuxingfu@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.062     OR     https://www.cjmr.org/EN/Y2022/V36/I6/443

CCrMoVNiMnSiFe
0.804.024.20.930.050.290.16Bal.
Table 1  Chemical compositions of 8Cr4Mo4V bearing steel (mass fraction, %)
Fig.1  Heat treatment regime involving vacuum graded quenching and tempering process of 8Cr4Mo4V steel
Fig.2  Dimensions of impact specimen and rotational bending fatigue specimen (a) impact specimen; (b) rotational bending fatigue specimen (unit: mm)
Fig.3  Surface temperature change curve of 8Cr4Mo4V steel sample during heat treatment involving vacuum graded quenching
Fig.4  Microstructure of 8Cr4Mo4V steel after vacuum quenching and tempering (a) quenched microstructure; (b) tempered microstructure
Fig.5  Microstructure of 8Cr4Mo4V steel after vacuum graded quenching at different temperatures (a) 540℃; (b) 560℃; (c) 580℃; (d) 600℃
Fig.6  Morphology of carbides of 8Cr4Mo4V steel after vacuum graded quenching at 600℃ for 10 min
CarbidesCMoVCrFeTypes
A27.334.071.344.1363.14M6C
B32.026.372.124.355.19M6C
C21.736.195.284.6462.17M2C
D47.039.939.494.3129.23MC
Table 2  Carbide types of 8Cr4Mo4V steel after vacuum graded quenching at 600℃ for 10 min (%, atomic fraction)
Fig.7  Tempering microstructure of 8Cr4Mo4V steel with vacuum graded quenching at different temperatures (a) 540℃; (b) 560℃; (c) 580℃; (d) 600℃
Fig.8  Volume fraction and average size of precipitated carbides in 8Cr4Mo4V steel at different grading temperatures
Fig.9  Volume fraction and average size of secondary carbides in 8Cr4Mo4V steel after tempering at different grading temperatures
Fig.10  XRD pattern and analysis on 8Cr4Mo4V steel after different vacuum graded quenching processes (a) XRD patterns (45°~115°); (b) XRD patterns (57°~67°); (c) carbon content in retained austenite and volume fraction of retained austenite
Fig.11  Bainite marking in 8Cr4Mo4V steel (a) bainite marking at 540℃; (b) bainite marking at 580℃
Fig.12  Relationship between bainite volume fraction and grading temperature of 8Cr4Mo4V steel
Fig.13  Microstructure evolution diagram of 8Cr4Mo4V steel under different vacuum graded quenching conditions (a) 540℃; (b) 560℃; (c) 580℃; (d) 600℃
Fig.14  Hardness of 8Cr4Mo4V steel after quenching and tempering under different vacuum graded quenching conditions
Fig.15  Impact fracture morphologies of 8Cr4Mo4V steel after different vacuum heat treatment processes (a, b) vacuum quenching and tempering; (c, d) vacuum graded quenching and tempering
Fig.16  S-N curves of 8Cr4Mo4V steel after different vacuum heat treatment
Fig.17  Rotational bending fatigue fracture morphologies of 8Cr4Mo4V steel after different vacuum heat treatment processes (a, b) vacuum quenching and tempering; (c, d) vacuum graded quenching and tempering
1 Guetard G, Toda-Caraballo I, Rivera-Diaz-Del-Castillo P E J. Damage evolution around primary carbides under rolling contact fatigue in VIM-VAR M50 [J]. Int. J. Fatigue., 2016, 91(1): 59
doi: 10.1016/j.ijfatigue.2016.05.026
2 Wang F, Qian D S, Hua L, et al. Voids healing and carbide refinement of cold rolled M50 bearing steel by electropulsing treatment [J]. Sci Rep., 2019, 9(1): 13
doi: 10.1038/s41598-018-36788-0
3 Mann G S, Singh L P, Singh G, et al. Comparative performance evaluation of mechanical properties of non-coated and coated carbide inserts under vacuum heat treatment [J]. Mater. Today: Proc., 2018, 5(14): 28229
4 Podgornik B, Pus G, Zuzek B, et al. Heat treatment optimization and properties correlation for H11-type hot-work tool steel [J]. Metall. Mater. Trans. A, 2018, 49(2): 455
5 Zhou L N, Tang G Z, Ma X X, et al. Relationship between microstructure and mechanical properties of M50 ultra-high strength steel via quenching-partitioning-tempering process [J]. Mater. Charact., 2018, 146: 258
doi: 10.1016/j.matchar.2018.10.009
6 Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10(11): 817
doi: 10.1038/nmat3115 pmid: 22020005
7 Zhao B Q. Salt bath step quenching process of high speed steel cutting tools [J]. Heat Treat. Tech. Equip., 2017, 38(4): 13
赵步青. 高速钢刀具盐浴分级淬火工艺 [J]. 热处理技术与装备, 2017, 38(4): 13
8 Ashrafi H, Shamanian M, Emadi R, et al. Examination of phase transformation kinetics during step quenching of dual phase steels [J]. Mater. Chem. Phys., 2016, 187: 203
doi: 10.1016/j.matchemphys.2016.12.002
9 Hu J J, Hu W, Wu Y Q. Effect of graded quenching specification on microstructure and properties of high speed steel [J]. J. Nanchang Univ., 2004, 26(3): 41
胡建军, 胡 文, 吴毅强. 高速钢分级淬火规范对其组织和性能的影响 [J]. 南昌大学学报, 2004, 26(3): 41
10 Li X H, Shi L, Liu Y C, et al. Achieving a desirable combination of mechanical properties in HSLA steel through step quenching [J]. Mater. Sci. Eng. A, 2019, 772: 138683
doi: 10.1016/j.msea.2019.138683
11 Atraszkiewicz R, Januszewicz B, Kaczmarek L, et al. High pressure gas quenching: distortion analysis in gears after heat treatment [J]. Mater. Sci. Eng. A, 2012, 558(15): 550
doi: 10.1016/j.msea.2012.08.047
12 Yang Y, Liu Y Z, LE J, et al. Isothermal heat treatment of a bearing steel for improved mechanical properties [J]. J. Alloys Compd., 2016, 660: 131
doi: 10.1016/j.jallcom.2015.11.051
13 Wang F, Qian D S, Mao H J, et al. Evolution of microstructure and mechanical properties during tempering of M50 steel with bainite/martensite duplex structure [J]. J. Mater. Res. Technol., 2020, 9(3): 6712
doi: 10.1016/j.jmrt.2020.04.075
14 Babu S S, Specht E D, David S A, et al. In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite [J]. Metall. Mater. Trans. A, 2005, 36(12): 3281
15 Edwin Bridge J, Maniar G N, Philip T V. Carbides in M50 high speed steel [J]. Metall. Trans., 1971, 2(8): 2209
16 Chu C, Qin Y, Li X, et al. Effect of two-step austempering process on transformation kinetics of nanostructured bainitic steel [J]. Mater., 2019, 12(1): 166
doi: 10.3390/ma12010166
17 Zhao J, Wang T S, Lv B, et al. Microstructures and mechanical properties of a modified high-C-Cr bearing steel with nano-scaled bainite [J]. Mater. Sci. Eng. A, 2015, 628: 327
doi: 10.1016/j.msea.2014.12.121
18 Hunkel M. Tempering effects of athermal martensite during quen-ching and reheating of a SAE 52100 bearing steel [J]. Mater. Sci. Eng. A, 2020, 790: 139601
doi: 10.1016/j.msea.2020.139601
19 Lu X H, Qian D S, Li W, et al. Enhanced toughness of bearing steel by combining prior cold deformation with martensite pre-quenching and bainite transformation [J]. Mater. Lett., 2019, 234: 5
doi: 10.1016/j.matlet.2018.09.017
20 Zhao K L, Liu Y B, Yu X F, et al. Effect of solid solution- and mesothermal phase transition-treatment on microstructure and mechanical property of ball bearing steel 8Cr4Mo4V [J]. Chin. J. Mater. Res., 2018, 32(3): 200
赵开礼, 刘永宝, 于兴福 等. 固溶温度对8Cr4Mo4V轴承钢的中温相转变和力学性能的影响 [J]. 材料研究学报, 2018, 32(3): 200
doi: 10.11901/1005.3093.2017.605
21 Guo J, Yang M S, Lu D H, et al. Rotating bending fatigue life and fatigue crack initiation mechanism of Cr4Mo4V bearing steel [J]. Mater. Eng., 2019, 47(7): 160
郭 军, 杨卯生, 卢德宏 等. Cr4Mo4V轴承钢旋转弯曲疲劳寿命及疲劳裂纹萌生机理 [J]. 材料工程, 2019, 47(7): 160
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
No Suggested Reading articles found!