|
|
Effect of Chemical Etching Process on Surface Roughness of TC4 Ti-alloy Fabricated by Laser Selective Melting |
CAI Yusheng1, HAN Hongzhi1,2, REN Dechun1, JI Haibin1, LEI Jiafeng1( ) |
1.Division of Titanium Alloys, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
|
Cite this article:
CAI Yusheng, HAN Hongzhi, REN Dechun, JI Haibin, LEI Jiafeng. Effect of Chemical Etching Process on Surface Roughness of TC4 Ti-alloy Fabricated by Laser Selective Melting. Chinese Journal of Materials Research, 2022, 36(6): 435-442.
|
Abstract Aiming to the problem of surface roughness caused by the adhesion of powder on the surface of TC4Ti-alloy fabricated by Selective Laser Melting (SLM), the influence of chemical etching process, including the formula of etching solution and process parameters, on the surface roughness of the SLMed Ti-alloy was investigated. The results shown that the ratio of HF/HNO3 of the etching solution and the etching time are the main influencing factors. Among them, HF play an important role in reducing the surface roughness of the fabricated Ti-alloy. However, this reducing effect of HF will be weakened as the ratio of HF/HNO3 decreases. For a constant ratio of HF/HNO3 (say HF/HNO3=1/4), the surface roughness decreases obviously with the increasing etching time, but when the etching time is too long, it will cause damage to the substrate. After etching in the solution of HF∶HNO3=1∶4 for 9 minutes, the surface roughness of the fabricated TC4 Ti-alloy is 2.52 μm. At the same time, the etching process has little effect on the size of the sample (with c.a.0.12 mm of thickness reduction), in other words, the etching process reached an optimal state at this time.
|
Received: 04 February 2021
|
|
Fund: Foundation of Aero Engine Corporation of China(HFZL2019CXY019) |
About author: LEI Jiafeng, Tel: (024)23971958, E-mail: jflei@imr.ac.cn
|
1 |
Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., 1996, 213A: 103
|
2 |
Wu X Y, Chen Z Y, Cheng C, et al. Effects of heat treatment on microstructure, texture and tensile properties of Ti65 alloy [J]. Chin. J. Mater. Res., 2019, 33: 785
|
|
吴汐玥, 陈志勇, 程 超 等. 热处理对Ti65钛合金板材的显微组织、织构及拉伸性能的影响 [J]. 材料研究学报, 2019, 33: 785
doi: 10.11901/1005.3093.2019.110
|
3 |
Wang X M, Zhang S Q, Yuan Z Y, et al. Effect of heat treatment on mechanical properties of Ti-3Al-8V-6Cr-4Mo-4Zr alloy [J]. Chin. J. Mater. Res., 2017, 31: 409
|
|
王雪萌, 张思倩, 袁子尧 等. 时效处理对Ti-3Al-8V-6Cr-4Mo-4Zr合金力学性能的影响 [J]. 材料研究学报, 2017, 31: 409
doi: 10.11901/1005.3093.2016.267
|
4 |
Ren D C, Su H H, Zhang H B, et al. Effect of cold rotary-swaging deformation on microstructure and tensile properties of TB9 titanium alloy [J]. Acta Metall. Sin., 2019, 55: 480
|
|
任德春, 苏虎虎, 张慧博 等. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响 [J]. 金属学报, 2019, 55: 480
doi: 10.11900/0412.1961.2018.00241
|
5 |
Wang G Q, Zhao Z B, Yu B B, et al. Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246 [J]. Chin. J. Mater. Res., 2017, 31: 352
|
|
王国强, 赵子博, 于冰冰 等. 热处理工艺对Ti6246钛合金组织与力学性能的影响 [J]. 材料研究学报, 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
|
6 |
Nag S, Banerjee R, Srinivasan R, et al. ω-Assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy [J]. Acta Mater., 2009, 57: 2136
doi: 10.1016/j.actamat.2009.01.007
|
7 |
Chen Y Y, Du Z X, Xiao S L, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy [J]. J. Alloys Compd., 2014, 586: 588
doi: 10.1016/j.jallcom.2013.10.096
|
8 |
Huang Z H, Qu H L, Deng C, et al. Development and application of aerial titanium and its alloys [J]. Mater. Rev., 2011, 25(1): 102
|
|
黄张洪, 曲恒磊, 邓 超 等. 航空用钛及钛合金的发展及应用 [J]. 材料导报, 2011, 25(1): 102
|
9 |
Qin Q H, Peng H B, Fan Q H, et al. Effect of second phase precipitation on martensitic transformation and hardness in highly Ni-rich NiTi alloys [J]. J. Alloys Compd., 2018, 739: 873
doi: 10.1016/j.jallcom.2017.12.128
|
10 |
Zhang H Y, Wang C, Zhang S Q, et al. Evolution of secondary α phase during aging treatment in novel near β Ti-6Mo-5V-3Al-2Fe alloy [J]. Materials, 2018, 11: 2283
doi: 10.3390/ma11112283
|
11 |
Liu W. Study on microstructure and tensile properties of TC4-DT titanium alloy forgings [J]. Heavy Cast. Forg., 2018, (3): 38
|
|
刘 卫. TC4-DT钛合金锻件组织与拉伸性能研究 [J]. 大型铸锻件, 2018, (3): 38
|
12 |
Ren Y M, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming [J]. Acta Mater., 2017, 132: 82
doi: 10.1016/j.actamat.2017.04.026
|
13 |
Ren D C, Li S J, Wang H, et al. Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique [J]. J. Mater. Sci. Technol., 2019, 35: 285
|
14 |
Schmidt A M, Azambuja D S. Corrosion behavior of Ti and Ti6Al4V in citrate buffers containing fluoride ions [J]. Mater. Res., 2010, 13: 45
|
15 |
Liu Y J, Li S J, Wang H L, et al. Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting [J]. Acta Mater., 2016, 113: 56
doi: 10.1016/j.actamat.2016.04.029
|
16 |
Wang P, Sin W J, Nai M L S, et al. Effects of processing parameters on surface roughness of additive manufactured Ti-6Al-4V via electron beam melting [J]. Materials, 2017, 10: 1121
doi: 10.3390/ma10101121
|
17 |
Ren D C, Zhang H B, Liu Y J, et al. Microstructure and properties of equiatomic Ti-Ni alloy fabricated by selective laser melting [J]. Mater. Sci. Eng., 2020, 771A: 138586
|
18 |
Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Mater., 2015, 85: 74
doi: 10.1016/j.actamat.2014.11.028
|
19 |
Zhang L C, Liu Y J, Li S J, et al. Additive manufacturing of titanium alloys by electron beam melting: a review [J]. Adv. Eng. Mater., 2018, 20: 1700842
doi: 10.1002/adem.201700842
|
20 |
The State Bureau of Quality and Technical Supervision. Geometrical Product Specifications (GPS)-Surface texture: profile method-terms, definitions and surface texture parameters [S]. Beijing: China Standardization Press, 2000: 1
|
|
国家质量技术监督局. 产品几何技术规范 表面结构 轮廓法 表面结构的术语、定义及参数 [S]. 北京: 中国标准出版社, 2000: 1
|
21 |
Mumtaz K, Hopkinson N. Top surface and side roughness of Inconel 625 parts processed using selective laser melting [J]. Rapid Prototyping J., 2009, 15: 96
doi: 10.1108/13552540910943397
|
22 |
Yang J J, Yu H C, Han J, et al. β-transus temperature of selective laser melted TC4 alloy [J]. Trans. Mater. Heat Treat., 2016, 37(9): 80
|
|
杨晶晶, 喻寒琛, 韩 婕 等. 激光选区熔化成形TC4合金的β转变温度 [J]. 材料热处理学报, 2016, 37(9): 80
|
23 |
Lin C, Liu F, Zhao Q, et al. Influencing factors of rate and surface quality of corrosion processing for TC4 [J]. J. Aeronaut. Mater., 2008, 28(5): 50
|
|
林 翠, 刘 枫, 赵 晴 等. TC4钛合金腐蚀加工速度和表面质量影响因素研究 [J]. 航空材料学报, 2008, 28(5): 50
|
24 |
Lin C, Hu G, Liang J, et al. Dissolution behavior of corrosion processing for TC1 and TC4 titanium alloy [J]. J. Aeronaut. Mater., 2010, 30(6): 43
|
|
林 翠, 胡 舸, 梁 静 等. TC1和TC4钛合金腐蚀加工溶解行为研究 [J]. 航空材料学报, 2010, 30(6): 43
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|