Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (6): 435-442    DOI: 10.11901/1005.3093.2021.130
ARTICLES Current Issue | Archive | Adv Search |
Effect of Chemical Etching Process on Surface Roughness of TC4 Ti-alloy Fabricated by Laser Selective Melting
CAI Yusheng1, HAN Hongzhi1,2, REN Dechun1, JI Haibin1, LEI Jiafeng1()
1.Division of Titanium Alloys, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

CAI Yusheng, HAN Hongzhi, REN Dechun, JI Haibin, LEI Jiafeng. Effect of Chemical Etching Process on Surface Roughness of TC4 Ti-alloy Fabricated by Laser Selective Melting. Chinese Journal of Materials Research, 2022, 36(6): 435-442.

Download:  HTML  PDF(15522KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aiming to the problem of surface roughness caused by the adhesion of powder on the surface of TC4Ti-alloy fabricated by Selective Laser Melting (SLM), the influence of chemical etching process, including the formula of etching solution and process parameters, on the surface roughness of the SLMed Ti-alloy was investigated. The results shown that the ratio of HF/HNO3 of the etching solution and the etching time are the main influencing factors. Among them, HF play an important role in reducing the surface roughness of the fabricated Ti-alloy. However, this reducing effect of HF will be weakened as the ratio of HF/HNO3 decreases. For a constant ratio of HF/HNO3 (say HF/HNO3=1/4), the surface roughness decreases obviously with the increasing etching time, but when the etching time is too long, it will cause damage to the substrate. After etching in the solution of HF∶HNO3=1∶4 for 9 minutes, the surface roughness of the fabricated TC4 Ti-alloy is 2.52 μm. At the same time, the etching process has little effect on the size of the sample (with c.a.0.12 mm of thickness reduction), in other words, the etching process reached an optimal state at this time.

Key words:  metallic materials      selective laser melting      TC4 titanium alloy      chemical corrosion      surface roughness     
Received:  04 February 2021     
ZTFLH:  TG146.23  
Fund: Foundation of Aero Engine Corporation of China(HFZL2019CXY019)
About author:  LEI Jiafeng, Tel: (024)23971958, E-mail: jflei@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.130     OR     https://www.cjmr.org/EN/Y2022/V36/I6/435

ElementsAlVFeCNHOTi
Content5.93.97≤0.05≤0.10≤0.05≤0.015≤0.10Bal.
Table 1  Chemical composition of TC4 titanium alloy powders (%, mass fraction)
Fig.1  Morphology of TC4 titanium alloy powders
Fig.2  Particle size distribution of TC4 titanium alloy powders
ParameterValue
Laser power/W200
Scanning speed/mm·s-11200
Layer thickness/mm0.025
Hatch spacing/mm0.1
Volume energy density/J·mm-367
Table 2  Processing parameters for profile area of TC4 titanium alloy by SLM
Fig.3  SEM (a) and (b) 3D surface morphologies of TC4 titanium alloy fabricated by SLM
Fig.4  Effect of HF concentration on surface roughness of TC4 titanium alloy fabricated by SLM
Fig.5  Surface morphologies of TC4 titanium alloy fabricated by SLM before (a) and after chemical corrosion in etching solution with HF∶HNO3=1∶2 (b), 1∶3 (c), 1∶4 (d), 1∶5 (e), 1∶6 (f), 1∶7 (g), 1∶8 (h), 1∶9 (i) and 0∶10 (j)
Fig.6  Surface 3D morphologies of TC4 titanium alloy fabricated by SLM before (a) and after chemical corrosion in etching solution with HF: HNO3= 1:2 (b), 1:4 (c) and 1:8 (d)
Fig.7  Effect of HF concentration on the thickness of TC4 titanium alloy fabricated by SLM
Fig.8  Effect of corrosion time on surface roughness of TC4 titanium alloy fabricated by SLM
Fig.9  Surface morphologies of TC4 titanium alloy fabricated by SLM after chemical etching for 1 min (a), 3 min (b), 5 min (c), 7 min (d), 9 min (e) and 11 min (f)
Fig.10  3D surface morphologies of TC4 titanium alloy fabricated by SLM after chemical etching for 1 min (a), 3 min (b), 5 min (c), 7 min (d), 9 min (e) and 11 min (f)
Fig.11  Effect of corrosion time on the thickness of SLM fabricated TC4 titanium alloy after chemical etching for different time
1 Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., 1996, 213A: 103
2 Wu X Y, Chen Z Y, Cheng C, et al. Effects of heat treatment on microstructure, texture and tensile properties of Ti65 alloy [J]. Chin. J. Mater. Res., 2019, 33: 785
吴汐玥, 陈志勇, 程 超 等. 热处理对Ti65钛合金板材的显微组织、织构及拉伸性能的影响 [J]. 材料研究学报, 2019, 33: 785
doi: 10.11901/1005.3093.2019.110
3 Wang X M, Zhang S Q, Yuan Z Y, et al. Effect of heat treatment on mechanical properties of Ti-3Al-8V-6Cr-4Mo-4Zr alloy [J]. Chin. J. Mater. Res., 2017, 31: 409
王雪萌, 张思倩, 袁子尧 等. 时效处理对Ti-3Al-8V-6Cr-4Mo-4Zr合金力学性能的影响 [J]. 材料研究学报, 2017, 31: 409
doi: 10.11901/1005.3093.2016.267
4 Ren D C, Su H H, Zhang H B, et al. Effect of cold rotary-swaging deformation on microstructure and tensile properties of TB9 titanium alloy [J]. Acta Metall. Sin., 2019, 55: 480
任德春, 苏虎虎, 张慧博 等. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响 [J]. 金属学报, 2019, 55: 480
doi: 10.11900/0412.1961.2018.00241
5 Wang G Q, Zhao Z B, Yu B B, et al. Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246 [J]. Chin. J. Mater. Res., 2017, 31: 352
王国强, 赵子博, 于冰冰 等. 热处理工艺对Ti6246钛合金组织与力学性能的影响 [J]. 材料研究学报, 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
6 Nag S, Banerjee R, Srinivasan R, et al. ω-Assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy [J]. Acta Mater., 2009, 57: 2136
doi: 10.1016/j.actamat.2009.01.007
7 Chen Y Y, Du Z X, Xiao S L, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy [J]. J. Alloys Compd., 2014, 586: 588
doi: 10.1016/j.jallcom.2013.10.096
8 Huang Z H, Qu H L, Deng C, et al. Development and application of aerial titanium and its alloys [J]. Mater. Rev., 2011, 25(1): 102
黄张洪, 曲恒磊, 邓 超 等. 航空用钛及钛合金的发展及应用 [J]. 材料导报, 2011, 25(1): 102
9 Qin Q H, Peng H B, Fan Q H, et al. Effect of second phase precipitation on martensitic transformation and hardness in highly Ni-rich NiTi alloys [J]. J. Alloys Compd., 2018, 739: 873
doi: 10.1016/j.jallcom.2017.12.128
10 Zhang H Y, Wang C, Zhang S Q, et al. Evolution of secondary α phase during aging treatment in novel near β Ti-6Mo-5V-3Al-2Fe alloy [J]. Materials, 2018, 11: 2283
doi: 10.3390/ma11112283
11 Liu W. Study on microstructure and tensile properties of TC4-DT titanium alloy forgings [J]. Heavy Cast. Forg., 2018, (3): 38
刘 卫. TC4-DT钛合金锻件组织与拉伸性能研究 [J]. 大型铸锻件, 2018, (3): 38
12 Ren Y M, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming [J]. Acta Mater., 2017, 132: 82
doi: 10.1016/j.actamat.2017.04.026
13 Ren D C, Li S J, Wang H, et al. Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique [J]. J. Mater. Sci. Technol., 2019, 35: 285
14 Schmidt A M, Azambuja D S. Corrosion behavior of Ti and Ti6Al4V in citrate buffers containing fluoride ions [J]. Mater. Res., 2010, 13: 45
15 Liu Y J, Li S J, Wang H L, et al. Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting [J]. Acta Mater., 2016, 113: 56
doi: 10.1016/j.actamat.2016.04.029
16 Wang P, Sin W J, Nai M L S, et al. Effects of processing parameters on surface roughness of additive manufactured Ti-6Al-4V via electron beam melting [J]. Materials, 2017, 10: 1121
doi: 10.3390/ma10101121
17 Ren D C, Zhang H B, Liu Y J, et al. Microstructure and properties of equiatomic Ti-Ni alloy fabricated by selective laser melting [J]. Mater. Sci. Eng., 2020, 771A: 138586
18 Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Mater., 2015, 85: 74
doi: 10.1016/j.actamat.2014.11.028
19 Zhang L C, Liu Y J, Li S J, et al. Additive manufacturing of titanium alloys by electron beam melting: a review [J]. Adv. Eng. Mater., 2018, 20: 1700842
doi: 10.1002/adem.201700842
20 The State Bureau of Quality and Technical Supervision. Geometrical Product Specifications (GPS)-Surface texture: profile method-terms, definitions and surface texture parameters [S]. Beijing: China Standardization Press, 2000: 1
国家质量技术监督局. 产品几何技术规范 表面结构 轮廓法 表面结构的术语、定义及参数 [S]. 北京: 中国标准出版社, 2000: 1
21 Mumtaz K, Hopkinson N. Top surface and side roughness of Inconel 625 parts processed using selective laser melting [J]. Rapid Prototyping J., 2009, 15: 96
doi: 10.1108/13552540910943397
22 Yang J J, Yu H C, Han J, et al. β-transus temperature of selective laser melted TC4 alloy [J]. Trans. Mater. Heat Treat., 2016, 37(9): 80
杨晶晶, 喻寒琛, 韩 婕 等. 激光选区熔化成形TC4合金的β转变温度 [J]. 材料热处理学报, 2016, 37(9): 80
23 Lin C, Liu F, Zhao Q, et al. Influencing factors of rate and surface quality of corrosion processing for TC4 [J]. J. Aeronaut. Mater., 2008, 28(5): 50
林 翠, 刘 枫, 赵 晴 等. TC4钛合金腐蚀加工速度和表面质量影响因素研究 [J]. 航空材料学报, 2008, 28(5): 50
24 Lin C, Hu G, Liang J, et al. Dissolution behavior of corrosion processing for TC1 and TC4 titanium alloy [J]. J. Aeronaut. Mater., 2010, 30(6): 43
林 翠, 胡 舸, 梁 静 等. TC1和TC4钛合金腐蚀加工溶解行为研究 [J]. 航空材料学报, 2010, 30(6): 43
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!