Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (4): 314-320    DOI: 10.11901/1005.3093.2021.115
ARTICLES Current Issue | Archive | Adv Search |
Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties
YIN Jie(), HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
Cite this article: 

YIN Jie, HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng. Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties. Chinese Journal of Materials Research, 2022, 36(4): 314-320.

Download:  HTML  PDF(2768KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A PANI/alginate modified glass electrode was prepared via a two-step electrodeposition approach. This approach combines the anodic electrodeposition of alginate with the electrochemical polymerization of aniline, which has many advantages such as convenient operation and simple post-treatment. The prepared PANI/alginate film presents dark green coloration similar to that of PANI. The PANI/alginate film is not only stable on the surface of the electrode, but also it can be detached completely from the electrode to be used as an independent film. The results from FTIR, XRD and SEM suggest that PANI and alginate do exist in the prepared film. The results of electrochemical performance analysis show that in comparison with the simple PANI modified electrode, the PANI/alginate modified electrode has higher electrochemical capacitance, better electrochemical stability, lower charge transfer resistance, better charge storage capacity and cycle stability. Thus, the PANI/alginate film modified electrode prepared by electrodeposition approach has promising application prospect as electrode material for capacitors.

Key words:  polymer materials      polyaniline/alginate film      electrodeposition      electrochemical properties     
Received:  25 January 2021     
ZTFLH:  O636  
Fund: Independent Innovation Research Fund of Wuhan University of Technology(206601005);National Innovation and Entrepreneurship Training Program for College Students(202010497011)
About author:  YIN Jie, Tel: 15827437627, E-mail: 1004350899@qq.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.115     OR     https://www.cjmr.org/EN/Y2022/V36/I4/314

Fig.1  Schematic illustration of the fabrication of the PANI/alginate film (a); Images of the bare ITO slide (b); the alginate film (c), the PANI film (d) and the PANI/alginate film (e) on ITO slide; The PANI/alginate film peeled from ITO (f)
Fig.2  XRD patterns (a) and FTIR spectra (b) of the alginate film, the PANI film and the PANI/alginate film
Fig.3  SEM images of the alginate film (a, b) and the PANI/alginate film (c, d)
Fig.4  CVs of the bare electrode, the alginate modified electrode, the PANI modified electrode and the PANI/alginate modified electrode at a scan rate of 100 mV/s (a); Nyquist plots of the PANI modified electrode and the PANI/alginate modified electrode in a frequency range of 0.01 Hz~100 kHz (b)
Fig.5  CVs of the PANI/alginate modified electrode at different scan rates
Fig.6  Galvanostatic charge-discharge curves of the bare electrode, the alginate modified electrode, the PANI modified electrode and the PANI/alginate modified electrode at a current density of 1 A/g (a); and the PANI/alginate modified electrode at different current densities (b)
Fig.7  Cycling stabilities of the PANI modified electrode and the PANI/alginate modified electrode
1 Liu Y, Kim E, Ghodssi R, et al. Biofabrication to build the biology-device interface [J]. Biofabrication, 2010, 2: 022002
2 Wu S P, Dai X Z, Cheng T T, et al. Highly sensitive and selective ion-imprinted polymers based on one-step electrodeposition of chitosan-graphene nanocomposites for the determination of Cr (VI) [J]. Carbohydr. Polym., 2018, 195: 199
doi: 10.1016/j.carbpol.2018.04.077
3 Lee K Y, Mooney D J. Alginate: Properties and biomedical applications [J]. Prog. Polym. Sci., 2012, 37: 106
doi: 10.1016/j.progpolymsci.2011.06.003
4 Li H, Pan J, Cao K Y, et al. Preparation of nano zinc oxide/sodium alginate composite film by electrodenosition [J]. Chin. J. Mater. Res., 2020, 34: 829
李 辉, 潘 捷, 曹凯元 等. 用电沉积法制备纳米氧化锌/海藻酸钠复合膜 [J]. 材料研究学报, 2020, 34: 829
5 Liu Z Y, Takeuchi M, Nakajima M, et al. Shape-controlled high cell-density microcapsules by electrodeposition [J]. Acta Biomater., 2016, 37: 93
doi: 10.1016/j.actbio.2016.03.045
6 Pawar S N, Edgar K J. Alginate derivatization: a review of chemistry, properties and applications [J]. Biomaterials, 2012, 33: 3279
doi: 10.1016/j.biomaterials.2012.01.007
7 Shi X W, Tsao C Y, Yang X H, et al. Electroaddressing of cell populations by co-deposition with calcium alginate hydrogels [J]. Adv. Funct. Mater., 2009, 19: 2074
doi: 10.1002/adfm.200900026
8 Márquez-Maqueda A, Ríos-Gallardo J M, Vigués N, et al. Enzymatic biosensors based on electrodeposited alginate hydrogels [J]. Procedia. Eng., 2016, 168: 622
doi: 10.1016/j.proeng.2016.11.229
9 Tian J, Peng D F, Wu X, et al. Electrodeposition of Ag nanoparticles on conductive polyaniline/cellulose aerogels with increased synergistic effect for energy storage [J]. Carbohydr. Polym., 2017, 156: 19
doi: 10.1016/j.carbpol.2016.09.005
10 Liu S L, Yu T F, Wu Y H, et al. Evolution of cellulose into flexible conductive green electronics: A smart strategy to fabricate sustainable electrodes for supercapacitors [J]. RSC Adv., 2014, 4: 34134
doi: 10.1039/C4RA07017H
11 Baker C O, Huang X W, Nelson W, et al. Polyaniline nanofibers: Broadening applications for conducting polymers [J]. Chem. Soc. Rev., 2017, 46: 1510
doi: 10.1039/C6CS00555A
12 Shi T L, Tang G X, Zhao C X, et al. Preparation and electrochemical performance of composites of polyaniline coated carbon micro-coils [J]. Chin. J. Mater. Res., 2018, 32: 58
史泰龙, 唐国霞, 赵晨曦 等. 聚苯胺包覆酸处理螺旋碳纤维材料的制备和电化学性能 [J]. 材料研究学报, 2018, 32: 58
doi: 10.11901/1005.3093.2017.121
13 Liu C X, Yu Y G, Chang Y Z, et al. Studies on preparation and electrochemical properties of electrochromic conductive polyaniline solid supercapacitor [J]. Acta Polym. Sin., 2016, (3): 352
刘翠仙, 余雅国, 常云珍 等. 电致变色型导电聚苯胺固态超级电容器的构建与性能研究 [J]. 高分子学报, 2016, (3): 352
14 Bhadra S, Khastgir D, Singha N K, et al. Progress in preparation, processing and applications of polyaniline [J]. Prog. Polym. Sci., 2009, 34: 783
doi: 10.1016/j.progpolymsci.2009.04.003
15 Li W, Jang D M, An S Y, et al. Polyaniline-chitosan nanocomposite: High performance hydrogen sensor from new principle [J]. Sens. Actuat., 2011, 160B: 1020
16 Zheng J, Yu X, Wang C, et al. Facile synthesis of three-dimensional reinforced Sn@polyaniline/sodium alginate nanofiber hydrogel network for high performance lithium-ion battery [J]. J. Mater. Sci., 2016, 27: 4457
17 Li Y Z, Zhao X, Xu Q, et al. Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors [J]. Langmuir, 2011, 27: 6458
doi: 10.1021/la2003063
18 Huang H B, Zeng X P, Li W, et al. Reinforced conducting hydrogels prepared from the in situ polymerization of aniline in an aqueous solution of sodium alginate [J]. J. Mater. Chem., 2014, 2A: 16516
19 Rethi M, Ponrathnam S, Rajan C R. Facile synthesis of processable conductive water solubilized Polyaniline [J]. Macromol. Rapid Commun., 1998, 19: 119
doi: 10.1002/(SICI)1521-3927(19980201)19:2<119::AID-MARC119>3.0.CO;2-#
20 Xu H, Yan W, Feng J T. Development of synthesis and polymerization mechanism of polyaniline [J]. Chem. Ind. Eng. Progr., 2008, 27: 1561
徐 浩, 延 卫, 冯江涛. 聚苯胺的合成与聚合机理研究进展 [J]. 化工进展, 2008, 27: 1561
21 Nicolas-Debarnot D, Poncin-Epaillard F. Polyaniline as a new sensitive layer for gas sensors [J]. Anal. Chim. Acta, 2003, 475: 1
doi: 10.1016/S0003-2670(02)01229-1
22 Syed A A, Dinesan M K. Review: Polyaniline-a novel polymeric material [J]. Talanta, 1991, 38: 815
pmid: 18965226
23 Karthik R, Meenakshi S. Removal of Cr(VI) ions by adsorption onto sodium alginate-polyaniline nanofibers [J]. Int. J. Biol. Macromol., 2015, 72: 711
doi: 10.1016/j.ijbiomac.2014.09.023
24 Yu Y J, Si Z H, Chen S J, et al. Facile synthesis of polyaniline-sodium alginate nanofibers [J]. Langmuir, 2006, 22: 3899
doi: 10.1021/la051911v
25 Sartori C, Finch D S, Ralph B, et al. Determination of the cation content of alginate thin films by FTi.r. spectroscopy [J]. Polymer, 1997, 38: 43
doi: 10.1016/S0032-3861(96)00458-2
26 Huang K, Wan M X. Self-assembled polyaniline nanostructures with photoisomerization function [J]. Chem. Mater., 2002, 14: 3486
doi: 10.1021/cm020206u
27 Liu X L, Liu H, Qu X, et al. Electrical signals triggered controllable formation of calcium-alginate film for wound treatment [J]. J. Mater. Sci., 2017, 28: 146
28 Ismail Y A, Shin S R, Shin K M, et al. Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in situ polymerization [J]. Sens. Actuat., 2008, 129B: 834
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] YANG Qin, WANG Zhen, FANG Chunjuan, WANG Ruodi, GAO Dahang. Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties[J]. 材料研究学报, 2022, 36(8): 628-634.
[5] LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. 材料研究学报, 2022, 36(7): 552-560.
[6] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[7] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[8] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. 材料研究学报, 2021, 35(2): 115-127.
[14] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[15] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
No Suggested Reading articles found!