|
|
Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties |
YIN Jie( ), HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng |
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China |
|
Cite this article:
YIN Jie, HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng. Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties. Chinese Journal of Materials Research, 2022, 36(4): 314-320.
|
Abstract A PANI/alginate modified glass electrode was prepared via a two-step electrodeposition approach. This approach combines the anodic electrodeposition of alginate with the electrochemical polymerization of aniline, which has many advantages such as convenient operation and simple post-treatment. The prepared PANI/alginate film presents dark green coloration similar to that of PANI. The PANI/alginate film is not only stable on the surface of the electrode, but also it can be detached completely from the electrode to be used as an independent film. The results from FTIR, XRD and SEM suggest that PANI and alginate do exist in the prepared film. The results of electrochemical performance analysis show that in comparison with the simple PANI modified electrode, the PANI/alginate modified electrode has higher electrochemical capacitance, better electrochemical stability, lower charge transfer resistance, better charge storage capacity and cycle stability. Thus, the PANI/alginate film modified electrode prepared by electrodeposition approach has promising application prospect as electrode material for capacitors.
|
Received: 25 January 2021
|
|
Fund: Independent Innovation Research Fund of Wuhan University of Technology(206601005);National Innovation and Entrepreneurship Training Program for College Students(202010497011) |
About author: YIN Jie, Tel: 15827437627, E-mail: 1004350899@qq.com
|
1 |
Liu Y, Kim E, Ghodssi R, et al. Biofabrication to build the biology-device interface [J]. Biofabrication, 2010, 2: 022002
|
2 |
Wu S P, Dai X Z, Cheng T T, et al. Highly sensitive and selective ion-imprinted polymers based on one-step electrodeposition of chitosan-graphene nanocomposites for the determination of Cr (VI) [J]. Carbohydr. Polym., 2018, 195: 199
doi: 10.1016/j.carbpol.2018.04.077
|
3 |
Lee K Y, Mooney D J. Alginate: Properties and biomedical applications [J]. Prog. Polym. Sci., 2012, 37: 106
doi: 10.1016/j.progpolymsci.2011.06.003
|
4 |
Li H, Pan J, Cao K Y, et al. Preparation of nano zinc oxide/sodium alginate composite film by electrodenosition [J]. Chin. J. Mater. Res., 2020, 34: 829
|
|
李 辉, 潘 捷, 曹凯元 等. 用电沉积法制备纳米氧化锌/海藻酸钠复合膜 [J]. 材料研究学报, 2020, 34: 829
|
5 |
Liu Z Y, Takeuchi M, Nakajima M, et al. Shape-controlled high cell-density microcapsules by electrodeposition [J]. Acta Biomater., 2016, 37: 93
doi: 10.1016/j.actbio.2016.03.045
|
6 |
Pawar S N, Edgar K J. Alginate derivatization: a review of chemistry, properties and applications [J]. Biomaterials, 2012, 33: 3279
doi: 10.1016/j.biomaterials.2012.01.007
|
7 |
Shi X W, Tsao C Y, Yang X H, et al. Electroaddressing of cell populations by co-deposition with calcium alginate hydrogels [J]. Adv. Funct. Mater., 2009, 19: 2074
doi: 10.1002/adfm.200900026
|
8 |
Márquez-Maqueda A, Ríos-Gallardo J M, Vigués N, et al. Enzymatic biosensors based on electrodeposited alginate hydrogels [J]. Procedia. Eng., 2016, 168: 622
doi: 10.1016/j.proeng.2016.11.229
|
9 |
Tian J, Peng D F, Wu X, et al. Electrodeposition of Ag nanoparticles on conductive polyaniline/cellulose aerogels with increased synergistic effect for energy storage [J]. Carbohydr. Polym., 2017, 156: 19
doi: 10.1016/j.carbpol.2016.09.005
|
10 |
Liu S L, Yu T F, Wu Y H, et al. Evolution of cellulose into flexible conductive green electronics: A smart strategy to fabricate sustainable electrodes for supercapacitors [J]. RSC Adv., 2014, 4: 34134
doi: 10.1039/C4RA07017H
|
11 |
Baker C O, Huang X W, Nelson W, et al. Polyaniline nanofibers: Broadening applications for conducting polymers [J]. Chem. Soc. Rev., 2017, 46: 1510
doi: 10.1039/C6CS00555A
|
12 |
Shi T L, Tang G X, Zhao C X, et al. Preparation and electrochemical performance of composites of polyaniline coated carbon micro-coils [J]. Chin. J. Mater. Res., 2018, 32: 58
|
|
史泰龙, 唐国霞, 赵晨曦 等. 聚苯胺包覆酸处理螺旋碳纤维材料的制备和电化学性能 [J]. 材料研究学报, 2018, 32: 58
doi: 10.11901/1005.3093.2017.121
|
13 |
Liu C X, Yu Y G, Chang Y Z, et al. Studies on preparation and electrochemical properties of electrochromic conductive polyaniline solid supercapacitor [J]. Acta Polym. Sin., 2016, (3): 352
|
|
刘翠仙, 余雅国, 常云珍 等. 电致变色型导电聚苯胺固态超级电容器的构建与性能研究 [J]. 高分子学报, 2016, (3): 352
|
14 |
Bhadra S, Khastgir D, Singha N K, et al. Progress in preparation, processing and applications of polyaniline [J]. Prog. Polym. Sci., 2009, 34: 783
doi: 10.1016/j.progpolymsci.2009.04.003
|
15 |
Li W, Jang D M, An S Y, et al. Polyaniline-chitosan nanocomposite: High performance hydrogen sensor from new principle [J]. Sens. Actuat., 2011, 160B: 1020
|
16 |
Zheng J, Yu X, Wang C, et al. Facile synthesis of three-dimensional reinforced Sn@polyaniline/sodium alginate nanofiber hydrogel network for high performance lithium-ion battery [J]. J. Mater. Sci., 2016, 27: 4457
|
17 |
Li Y Z, Zhao X, Xu Q, et al. Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors [J]. Langmuir, 2011, 27: 6458
doi: 10.1021/la2003063
|
18 |
Huang H B, Zeng X P, Li W, et al. Reinforced conducting hydrogels prepared from the in situ polymerization of aniline in an aqueous solution of sodium alginate [J]. J. Mater. Chem., 2014, 2A: 16516
|
19 |
Rethi M, Ponrathnam S, Rajan C R. Facile synthesis of processable conductive water solubilized Polyaniline [J]. Macromol. Rapid Commun., 1998, 19: 119
doi: 10.1002/(SICI)1521-3927(19980201)19:2<119::AID-MARC119>3.0.CO;2-#
|
20 |
Xu H, Yan W, Feng J T. Development of synthesis and polymerization mechanism of polyaniline [J]. Chem. Ind. Eng. Progr., 2008, 27: 1561
|
|
徐 浩, 延 卫, 冯江涛. 聚苯胺的合成与聚合机理研究进展 [J]. 化工进展, 2008, 27: 1561
|
21 |
Nicolas-Debarnot D, Poncin-Epaillard F. Polyaniline as a new sensitive layer for gas sensors [J]. Anal. Chim. Acta, 2003, 475: 1
doi: 10.1016/S0003-2670(02)01229-1
|
22 |
Syed A A, Dinesan M K. Review: Polyaniline-a novel polymeric material [J]. Talanta, 1991, 38: 815
pmid: 18965226
|
23 |
Karthik R, Meenakshi S. Removal of Cr(VI) ions by adsorption onto sodium alginate-polyaniline nanofibers [J]. Int. J. Biol. Macromol., 2015, 72: 711
doi: 10.1016/j.ijbiomac.2014.09.023
|
24 |
Yu Y J, Si Z H, Chen S J, et al. Facile synthesis of polyaniline-sodium alginate nanofibers [J]. Langmuir, 2006, 22: 3899
doi: 10.1021/la051911v
|
25 |
Sartori C, Finch D S, Ralph B, et al. Determination of the cation content of alginate thin films by FTi.r. spectroscopy [J]. Polymer, 1997, 38: 43
doi: 10.1016/S0032-3861(96)00458-2
|
26 |
Huang K, Wan M X. Self-assembled polyaniline nanostructures with photoisomerization function [J]. Chem. Mater., 2002, 14: 3486
doi: 10.1021/cm020206u
|
27 |
Liu X L, Liu H, Qu X, et al. Electrical signals triggered controllable formation of calcium-alginate film for wound treatment [J]. J. Mater. Sci., 2017, 28: 146
|
28 |
Ismail Y A, Shin S R, Shin K M, et al. Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in situ polymerization [J]. Sens. Actuat., 2008, 129B: 834
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|