|
|
Effect of Graded Solution Treatments on Microstructure and Hardness of 8Cr4Mo4V Steel |
YU Xingfu1( ), WANG Shijie2, ZHENG Dongyue2, WANG Quanzhen3, SU Yong4, ZHAO Wenzeng1, XING Fei1 |
1.School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China 2.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 3.Shenyang Blower Group Co. Ltd., Shenyang 110869, China 4.School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China |
|
Cite this article:
YU Xingfu, WANG Shijie, ZHENG Dongyue, WANG Quanzhen, SU Yong, ZHAO Wenzeng, XING Fei. Effect of Graded Solution Treatments on Microstructure and Hardness of 8Cr4Mo4V Steel. Chinese Journal of Materials Research, 2022, 36(4): 287-297.
|
Abstract The effect of graded solution treatments, i.e. a primary solution treatment at 1000~1060℃ and a secondary solution treatment at 1080~1100℃, on the microstructure and hardness of the 8Cr4Mo4V aviation bearing steel was assessed by means of SEM, TEM and hardness tester. The results show that with the increase of the primary solution temperature from 1000℃ to 1060℃ (the secondary solution treatment was set at 1080℃×10 min), the volume fraction of undissolved carbides in the steel decreased from 4.37% to 3.43%, but the grain growth was not obvious. However, with the increase of secondary solution temperature from 1080℃ to 1100°C (the primary solution treatment was set at 1060°C×30 min), the volume fraction of undissolved carbides gradually decreased from 3.51% to 2.84%, and the average grain size increased significantly. The tempered hardness of the steel can reach a high value when the primary solution temperature is low or the secondary solution temperature is high. In order to improve the hardness and prevent grain coarsening of the steel, the primary solution temperature within the range of 1020~1050℃ is suitable, and the secondary solution temperature is suitable within 1080~1090℃. After being solution treated according to the specifications of 1020℃×20 min+1090℃×10 min, the average grain size of the steel is 12.1 μm, the tempered hardness is 63.8 HRC, the impact absorption energy is 15.28 J, and the tensile strength of the steel is 2664.3 MPa.
|
Received: 24 December 2021
|
|
Fund: Liaoning Revitalization Talents Program(XLYC1902022);Scientific Research Funding Project of Liaoning Provincial Department of Education(LJKZ0113) |
About author: YU Xingfu, Tel: 13604072060, E-mail: yuxingfu@163.com
|
1 |
Sun L X, Li M Q. High temperature behavior of isothermally compressed M50 steel [J]. J. Iron Steel Res. Int., 2015, 22 (010): 969
|
2 |
Bhadeshia H K D H. Steels for bearings [J]. Prog. Mater. Sci., 2012, 57(2): 268
doi: 10.1016/j.pmatsci.2011.06.002
|
3 |
Gerardi D T, Trivedi H K, Rosado L. Evaluation of fatigue and wear characteristics of M50 steel using MIL-L-7808K [J]. Int. J. Fatigue, 1996, 18(3): 191
doi: 10.1016/0142-1123(96)00097-7
|
4 |
Mesquita R A. Tool Steels: Properties and Performance [M]. Florida: CRC Press, Inc., 2017
|
5 |
Mukhopadhyay P, Kannaki P S, Srinivas M, et al. Microstructural developments during abrasion of M50 bearing steel [J]. Wear, 2014, 315(1-2): 31
doi: 10.1016/j.wear.2014.03.010
|
6 |
Zhou L N, Yang X F, Liu M, et al. Research progress on heat treatment and surface modification technology of 8Cr4Mo4V high-temperature bearing steel [J]. Bearing, 2021(8): 1
|
|
周丽娜, 杨晓峰, 刘 明 等. 8Cr4Mo4V高温轴承钢热处理及表面改性技术的研究进展 [J]. 轴承, 2021(8): 1
|
7 |
Zhao K L, Liu Y B, Yu X F. Effect of solid solution- and mesothermal phase transition-treatment on microstructure and mechanical property of ball bearing steel 8Cr4Mo4V [J]. Chin. J. Mater. Res., 2018, 32(3): 200
|
|
赵开礼, 刘永宝, 于兴福 等. 固溶温度对8Cr4Mo4V轴承钢的中温相转变和力学性能的影响 [J]. 材料研究学报, 2018, 32(3): 200
doi: 10.11901/1005.3093.2017.605
|
8 |
Liu H X, Yu X F, Wei Y H, et al. Development of aviation bearing steel and heat treatment technology [J]. Aeron. Manuf. Technol. 2020, 63(Z1): 94
|
|
刘洪秀, 于兴福, 魏英华 等. 航空轴承钢的发展及热处理技术 [J]. 航空制造技术, 2020, 63(Z1): 94
|
9 |
Boccalini M, Goldenstein H. Solidification of high speed steels [J]. Metall. Rev., 2001, 46(2): 92
doi: 10.1179/095066001101528411
|
10 |
Bridge J E, Maniar G N, Philip T V. Carbides in M-50 high speed steel [J]. Metall. Mater. Trans. B, 1971, 2(8): 2209
doi: 10.1007/BF02917552
|
11 |
Liu W F, Cao Y F, Guo Y F, et al. Characteristics and transformation of primary carbides during austenitization in Cr4Mo4V bearing steel [J]. Mater. Charact., 2020, 169: 1
|
12 |
Zhou L N, Tang G Z, Ma X X, et al. Microstructure evolution of M50 steel during carbon partitioning process [J]. Trans. Mater. Heat Treat., 2018, 39(1): 77
|
|
周丽娜, 唐光泽, 马欣新 等. M50钢碳分配过程中的组织演化 [J]. 材料热处理学报, 2018, 39(1): 77
|
13 |
Cai X, Sun M Y, Wang W, et al. Mathematical models of austnite grain growth of 8Cr4Mo4V aviation bearing steel at high temperature [J]. J. Mater. Eng., 2018, 46(9): 131
|
|
蔡 欣, 孙明月, 王 卫 等. 8Cr4Mo4Ni4V航空轴承钢高温奥氏体晶粒长大的数学模型 [J]. 材料工程, 2018, 46(9): 131
|
14 |
GB/T 6394-2017, Determination of estimating the average grain size of metal [S]. Beijing: Standards Press of China, 2017: 1
|
|
GB/T 6394-2017, 金属平均晶粒度测定方法[S]. 北京: 中国标准出版社, 2017: 1
|
15 |
GB/T 230.1-2018, Metallic materials—Rockwell hardness test—Part 1: Test method[S]. Beijing: Standards Press of China, 2018: 1
|
|
GB/T 230.1-2018, 金属材料 洛氏硬度试验 第1部分: 试验方法[S]. 北京: 中国标准出版社, 2018: 1
|
16 |
GB/T 229-2007, Metallic materials—Charpy pendulum impact test method[S]. Beijing: Standards Press of China, 2007: 1
|
|
GB/T 229-2007, 金属材料 夏比摆锤冲击试验方法[S]. 北京: 中国标准出版社, 2007: 1
|
17 |
GB/T 228-2002, Metallic materials—Tensile testing at ambient temperature[S]. Beijing: Standards Press of China, 2002: 1
|
|
GB/T 228-2002, 金属材料 室温拉伸试验方法[S]. 北京: 中国标准出版社, 2002: 1
|
18 |
Gong W, Tomota Y, Harjo S, et al. Effect of prior martensite on bainite transformation in nanobainite steel [J]. Acta Mater., 2015, 85: 243
doi: 10.1016/j.actamat.2014.11.029
|
19 |
Kawata H, Hayashi K, Sugiura N, et al. Effect of martensite in initial structure on bainite transformation [J]. Mater. Sci. Forum, 2010, 638-642: 3307
doi: 10.4028/www.scientific.net/MSF.638-642.3307
|
20 |
Ren J, Li C, Han Y, et al. Effect of initial martensite and tempered carbide on mechanical properties of 3Cr2MnNiMo mold steel [J]. Mater. Sci. Eng. A, 2021, 812: 141080
|
21 |
Decaudin B, Djega-Mariadassou C, Cizeron G. Structural study of M50 steel carbides [J]. J. Alloys Compd., 1995, 226(1-2): 208
doi: 10.1016/0925-8388(95)01616-3
|
22 |
Yang P, Luo H W. Design and development of improved M50 high-temperature bearing steel [J]. Heat Treat. Met. 2018, 43(8): 7
|
|
杨 平, 罗海文. 改进型M50高温用轴承钢的设计与研发 [J]. 金属热处理, 2018, 43(8): 7
|
23 |
Zou Z X, Xiang J Z, Xu S Y. Theoretical derivation of Hall-Petch relationship and discussion of its applicable range [J]. Phys. Exam. Test. 2012, 30(6): 5
|
|
邹章雄, 项金钟, 许思勇. Hall-Petch关系的理论推导及其适用范围讨论 [J]. 物理测试, 2012, 30(6): 5
|
24 |
Payson P. The Metallurgy of Tool Steels [M]. New York: John Wiley and Sons, Ltd., 1962
|
25 |
Hetzner D W, Geertruyden W V. Crystallography and metallography of carbides in high alloy steels [J]. Mater. Charact., 2008, 59(7): 825
doi: 10.1016/j.matchar.2007.07.005
|
26 |
Wang F, Qian D S, Mao H J, et al. Evolution of microstructure and mechanical properties during tempering of M50 steel with Bainite/Martensite duplex structure [J]. J. Mater. Res. Technol., 2020, 9(3): 1
doi: 10.1016/j.jmrt.2019.08.055
|
27 |
Xie Z J, Ma X P, Shang C J, Wang X M, Subramanian S V. Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel [J]. Mater. Sci. Eng. A, 2015, 641: 37
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|