Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (4): 287-297    DOI: 10.11901/1005.3093.2021.702
ARTICLES Current Issue | Archive | Adv Search |
Effect of Graded Solution Treatments on Microstructure and Hardness of 8Cr4Mo4V Steel
YU Xingfu1(), WANG Shijie2, ZHENG Dongyue2, WANG Quanzhen3, SU Yong4, ZHAO Wenzeng1, XING Fei1
1.School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
2.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
3.Shenyang Blower Group Co. Ltd., Shenyang 110869, China
4.School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
Cite this article: 

YU Xingfu, WANG Shijie, ZHENG Dongyue, WANG Quanzhen, SU Yong, ZHAO Wenzeng, XING Fei. Effect of Graded Solution Treatments on Microstructure and Hardness of 8Cr4Mo4V Steel. Chinese Journal of Materials Research, 2022, 36(4): 287-297.

Download:  HTML  PDF(24636KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of graded solution treatments, i.e. a primary solution treatment at 1000~1060℃ and a secondary solution treatment at 1080~1100℃, on the microstructure and hardness of the 8Cr4Mo4V aviation bearing steel was assessed by means of SEM, TEM and hardness tester. The results show that with the increase of the primary solution temperature from 1000℃ to 1060℃ (the secondary solution treatment was set at 1080℃×10 min), the volume fraction of undissolved carbides in the steel decreased from 4.37% to 3.43%, but the grain growth was not obvious. However, with the increase of secondary solution temperature from 1080℃ to 1100°C (the primary solution treatment was set at 1060°C×30 min), the volume fraction of undissolved carbides gradually decreased from 3.51% to 2.84%, and the average grain size increased significantly. The tempered hardness of the steel can reach a high value when the primary solution temperature is low or the secondary solution temperature is high. In order to improve the hardness and prevent grain coarsening of the steel, the primary solution temperature within the range of 1020~1050℃ is suitable, and the secondary solution temperature is suitable within 1080~1090℃. After being solution treated according to the specifications of 1020℃×20 min+1090℃×10 min, the average grain size of the steel is 12.1 μm, the tempered hardness is 63.8 HRC, the impact absorption energy is 15.28 J, and the tensile strength of the steel is 2664.3 MPa.

Key words:  metallic materials      8Cr4Mo4V      high temperature bearing steel      graded solution treatment      mechanical property     
Received:  24 December 2021     
ZTFLH:  TG142.1  
Fund: Liaoning Revitalization Talents Program(XLYC1902022);Scientific Research Funding Project of Liaoning Provincial Department of Education(LJKZ0113)
About author:  YU Xingfu, Tel: 13604072060, E-mail: yuxingfu@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.702     OR     https://www.cjmr.org/EN/Y2022/V36/I4/287

CCrMoVMnSiFe
0.834.054.231.050.360.22Bal.
Table 1  Chemical composition of experimental 8Cr4Mo4V steel (mass fraction, %)
Fig.1  Heat treatment process of 8Cr4Mo4V steel, T1 and t1 are the primary solution temperature and time, and T2 and t2 are the secondary solution temperature and time
Fig.2  Isothermal quenched microstructure of 8Cr4Mo4V steel treated by different primary solution treatments (a) 1000℃; (b) 1020℃; (c) 1050℃; (d) 1060℃
Fig.3  Energy spectrum analysis of carbides with different shapes and statistical graphs of grain size and carbides (a) arrow 1 in Fig.2a; (b) arrow 2 in Fig.2a; (c) arrow 3 in Fig.2a; (d) arrow 4 in Fig.2a; (e) statistical graph of average grain size; (f) statistical graph of carbides
Fig.4  Variation of volume fraction of undissolved carbides and average grain size with primary solution temperature
Fig.5  Tempered microstructure of 8Cr4Mo4V steel treated by different primary solution treatments (a) 1000℃; (b) 1020℃; (c) 1050℃; (d) 1060℃
Fig.6  Tempered microstructure of the 8Cr4Mo4V steel treated by different primary solution treatments (a) 1000℃; (b) 1020℃; (c) 1050℃; (d) 1060℃
Fig.7  Rockwell hardness of 8Cr4Mo4V steel treated by different primary solution treatments
Fig.8  Isothermal quenched microstructure (a, c, e) and tempered microstructure (b, d, f) of 8Cr4Mo4V steel after different secondary solution treatments (a) and (b), 1080℃; (c) and (d), 1090℃; (e) and (f), 1100℃
Fig.9  Variation of volume fraction of undissolved carbides and average grain size with secondary solution temperature
Fig.10  Relationship between hardness of 8Cr4Mo4V steel and second solution temperature
Fig.11  Schematic diagram of grain growth at different solution temperatures
Fig.12  Diagram of carbide dissolution and reprecipitation of the steel treated by different hierarchical solution treatments (a) and (a'), 1000~1080℃; (b) and (b'), 1020~1080℃; (c) and (c'), 1050~1080℃; (d) and (d'), 1060~1080℃; (e) and (e'), 1060~1090℃; (f) and (f'), 1060~1100℃
Fig.13  Average grain size and tempered hardness of the 8Cr4Mo4V steel treated by different hierarchical solution treatments (a) different primary solution temperature; (b) different secondary solution temperature
Fig.14  Images of metallographic grain (a) and microstructure (b) of the specimen treated by verification process
1 Sun L X, Li M Q. High temperature behavior of isothermally compressed M50 steel [J]. J. Iron Steel Res. Int., 2015, 22 (010): 969
2 Bhadeshia H K D H. Steels for bearings [J]. Prog. Mater. Sci., 2012, 57(2): 268
doi: 10.1016/j.pmatsci.2011.06.002
3 Gerardi D T, Trivedi H K, Rosado L. Evaluation of fatigue and wear characteristics of M50 steel using MIL-L-7808K [J]. Int. J. Fatigue, 1996, 18(3): 191
doi: 10.1016/0142-1123(96)00097-7
4 Mesquita R A. Tool Steels: Properties and Performance [M]. Florida: CRC Press, Inc., 2017
5 Mukhopadhyay P, Kannaki P S, Srinivas M, et al. Microstructural developments during abrasion of M50 bearing steel [J]. Wear, 2014, 315(1-2): 31
doi: 10.1016/j.wear.2014.03.010
6 Zhou L N, Yang X F, Liu M, et al. Research progress on heat treatment and surface modification technology of 8Cr4Mo4V high-temperature bearing steel [J]. Bearing, 2021(8): 1
周丽娜, 杨晓峰, 刘 明 等. 8Cr4Mo4V高温轴承钢热处理及表面改性技术的研究进展 [J]. 轴承, 2021(8): 1
7 Zhao K L, Liu Y B, Yu X F. Effect of solid solution- and mesothermal phase transition-treatment on microstructure and mechanical property of ball bearing steel 8Cr4Mo4V [J]. Chin. J. Mater. Res., 2018, 32(3): 200
赵开礼, 刘永宝, 于兴福 等. 固溶温度对8Cr4Mo4V轴承钢的中温相转变和力学性能的影响 [J]. 材料研究学报, 2018, 32(3): 200
doi: 10.11901/1005.3093.2017.605
8 Liu H X, Yu X F, Wei Y H, et al. Development of aviation bearing steel and heat treatment technology [J]. Aeron. Manuf. Technol. 2020, 63(Z1): 94
刘洪秀, 于兴福, 魏英华 等. 航空轴承钢的发展及热处理技术 [J]. 航空制造技术, 2020, 63(Z1): 94
9 Boccalini M, Goldenstein H. Solidification of high speed steels [J]. Metall. Rev., 2001, 46(2): 92
doi: 10.1179/095066001101528411
10 Bridge J E, Maniar G N, Philip T V. Carbides in M-50 high speed steel [J]. Metall. Mater. Trans. B, 1971, 2(8): 2209
doi: 10.1007/BF02917552
11 Liu W F, Cao Y F, Guo Y F, et al. Characteristics and transformation of primary carbides during austenitization in Cr4Mo4V bearing steel [J]. Mater. Charact., 2020, 169: 1
12 Zhou L N, Tang G Z, Ma X X, et al. Microstructure evolution of M50 steel during carbon partitioning process [J]. Trans. Mater. Heat Treat., 2018, 39(1): 77
周丽娜, 唐光泽, 马欣新 等. M50钢碳分配过程中的组织演化 [J]. 材料热处理学报, 2018, 39(1): 77
13 Cai X, Sun M Y, Wang W, et al. Mathematical models of austnite grain growth of 8Cr4Mo4V aviation bearing steel at high temperature [J]. J. Mater. Eng., 2018, 46(9): 131
蔡 欣, 孙明月, 王 卫 等. 8Cr4Mo4Ni4V航空轴承钢高温奥氏体晶粒长大的数学模型 [J]. 材料工程, 2018, 46(9): 131
14 GB/T 6394-2017, Determination of estimating the average grain size of metal [S]. Beijing: Standards Press of China, 2017: 1
GB/T 6394-2017, 金属平均晶粒度测定方法[S]. 北京: 中国标准出版社, 2017: 1
15 GB/T 230.1-2018, Metallic materials—Rockwell hardness test—Part 1: Test method[S]. Beijing: Standards Press of China, 2018: 1
GB/T 230.1-2018, 金属材料 洛氏硬度试验 第1部分: 试验方法[S]. 北京: 中国标准出版社, 2018: 1
16 GB/T 229-2007, Metallic materials—Charpy pendulum impact test method[S]. Beijing: Standards Press of China, 2007: 1
GB/T 229-2007, 金属材料 夏比摆锤冲击试验方法[S]. 北京: 中国标准出版社, 2007: 1
17 GB/T 228-2002, Metallic materials—Tensile testing at ambient temperature[S]. Beijing: Standards Press of China, 2002: 1
GB/T 228-2002, 金属材料 室温拉伸试验方法[S]. 北京: 中国标准出版社, 2002: 1
18 Gong W, Tomota Y, Harjo S, et al. Effect of prior martensite on bainite transformation in nanobainite steel [J]. Acta Mater., 2015, 85: 243
doi: 10.1016/j.actamat.2014.11.029
19 Kawata H, Hayashi K, Sugiura N, et al. Effect of martensite in initial structure on bainite transformation [J]. Mater. Sci. Forum, 2010, 638-642: 3307
doi: 10.4028/www.scientific.net/MSF.638-642.3307
20 Ren J, Li C, Han Y, et al. Effect of initial martensite and tempered carbide on mechanical properties of 3Cr2MnNiMo mold steel [J]. Mater. Sci. Eng. A, 2021, 812: 141080
21 Decaudin B, Djega-Mariadassou C, Cizeron G. Structural study of M50 steel carbides [J]. J. Alloys Compd., 1995, 226(1-2): 208
doi: 10.1016/0925-8388(95)01616-3
22 Yang P, Luo H W. Design and development of improved M50 high-temperature bearing steel [J]. Heat Treat. Met. 2018, 43(8): 7
杨 平, 罗海文. 改进型M50高温用轴承钢的设计与研发 [J]. 金属热处理, 2018, 43(8): 7
23 Zou Z X, Xiang J Z, Xu S Y. Theoretical derivation of Hall-Petch relationship and discussion of its applicable range [J]. Phys. Exam. Test. 2012, 30(6): 5
邹章雄, 项金钟, 许思勇. Hall-Petch关系的理论推导及其适用范围讨论 [J]. 物理测试, 2012, 30(6): 5
24 Payson P. The Metallurgy of Tool Steels [M]. New York: John Wiley and Sons, Ltd., 1962
25 Hetzner D W, Geertruyden W V. Crystallography and metallography of carbides in high alloy steels [J]. Mater. Charact., 2008, 59(7): 825
doi: 10.1016/j.matchar.2007.07.005
26 Wang F, Qian D S, Mao H J, et al. Evolution of microstructure and mechanical properties during tempering of M50 steel with Bainite/Martensite duplex structure [J]. J. Mater. Res. Technol., 2020, 9(3): 1
doi: 10.1016/j.jmrt.2019.08.055
27 Xie Z J, Ma X P, Shang C J, Wang X M, Subramanian S V. Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel [J]. Mater. Sci. Eng. A, 2015, 641: 37
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!