Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (4): 298-306    DOI: 10.11901/1005.3093.2021.104
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of SiOC Aerogel/Flexible Ceramic Fiber Composite
ZHU Shiyang1, PAN Xu3, ZHONG Yesheng1, MA Xiaoliang1, GAO Yan1, SHI Liping1(), LI Mingwei1, HE Xiaodong1,2()
1.National Key Laboratory of Science and Technology on Advanced Composite in Special Environments, Harbin Institute of Technology, Harbin 150000, China
2.Shenzhen STRONG Advanced Materials Research Institute Co. Ltd., Shenzhen 518000, China
3.Department of Materials and Chemistry, Soochow University, Suzhou 215000, China
Cite this article: 

ZHU Shiyang, PAN Xu, ZHONG Yesheng, MA Xiaoliang, GAO Yan, SHI Liping, LI Mingwei, HE Xiaodong. Preparation and Properties of SiOC Aerogel/Flexible Ceramic Fiber Composite. Chinese Journal of Materials Research, 2022, 36(4): 298-306.

Download:  HTML  PDF(3243KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

SiOC aerogels with different C/Si ratio were prepared by sol-gel method with ethyl orthosilicate (TEOS) and methyl trimethoxysilane (MTMS) as precursor. Then the SiOC aerosol was sprayed on the flexible ceramic fiber insulation blanket by atmospheric spraying, therewith, the SiOC aerogel/flexible ceramic fiber composite material was successfully prepared. The C/Si ratio is an important factor affecting the performance of SiOC aerogel/flexible ceramic fiber composites. As the ratio of C/Si (atomic ratio) increases, the gel time of SiOC sol is prolonged, whilst it is easier to infiltrate into the insulation blanket; the density and thermal conductivity of the composite decrease first and then increase. When the ratio is 0.67 the thermal conductivity of the composite is the lowest, namely, 0.026 W/m·K at room temperature and 0.174 W/m·K at 1000℃ respectively. Compared with unmodified insulation blanket the thermal conductivity is significantly reduced, especially by 47% at high temperature environment. The composite has excellent high temperature resistance and oxidation resistance. At 1200℃ in air the mass loss percentage of the sample is about 1% after pyrolysising for 1 h, whilst about 5% after pyrolysising for 3 h. As the C/Si ratio increases the mass loss of the composite increasees; in addition, the SiOC aerogel composite material also has good hydrophobic properties, flexibility and resilience.

Key words:  composite      flexible fiber blanket      sol-gel      SiOC aerogel     
Received:  20 January 2021     
ZTFLH:  TB322  
Fund: Shenzhen Science and Technology Program(KQTD2016112814303055);Funds for National Key Laboratory of Science and Technology on Advanced Composite in Special Environments, Harbin Institute of Technology(2019KX00914)
About author:  SHI Liping, Tel: 13313654597, E-mail: shiliping@hit.edu.cn
HE Xiaodong, Tel: (0451)6412513, E-mail: hexd@hit.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.104     OR     https://www.cjmr.org/EN/Y2022/V36/I4/298

Fig.1  Preparation process of SiOC aerogel composite
Sample

TEOS

/mol

MTMS

/mol

EtOH

/mol

H2O

/mol

C/Si
1#0.200.13.03.00.33
2#0.100.12.02.00.50
3#0.090.11.91.90.53
4#0.080.11.81.80.56
5#0.070.11.71.70.59
6#0.050.11.51.50.67
7#0.040.11.41.40.71
Table 1  Raw material ratio of SiOC sol
Fig.2  Relationship between the viscosity of SiOC sol and time
Sample1234567
Optimal gel time /min14233143486076
Table 2  Optimal gel time for SiOC sol
Fig.3  Microstructure of ceramic fiber and SiOC aerogel/ceramic fiber composite (a) unmodified insulation blanket, (b) sample 1# (c) sample 2#, (d) sample 3#, (e) sample 4#, (f) sample 5#, (g) sample 6#, (h) sample 7#
Fig.4  Density and thermal conductivity of SiOC aerogel/flexible ceramic fiber composite
Fig.5  Relationship between thermal conductivity of sample 6# and temperature
Fig.6  Microstructure of sample 6# (C/Si=0.67) SiOC aerogel composite after static burning at 1200℃
Fig.7  Mass loss rate of SiOC aerogel composite after static firing at 1200℃ with different time
Fig.8  Photographs showing a water droplet on the composites (a) sample 4#, (b) sample 5#, (c) sample 6#, (d) sample 7#
Time/d0#1#2#3#4#5#6#7#
01.2450.4890.5130.5530.7690.4640.6810.433
71.2480.4900.5140.5550.7720.4640.6830.433
141.2580.4900.5320.5570.7720.4650.6830.433
211.2620.4920.5320.5580.7740.4660.6840.436
281.3000.4930.5330.5590.7750.4700.6840.439
351.3500.5060.5330.5700.7890.4760.6990.445
Moisture content/%7.7783.3603.7522.9822.5352.5212.5752.697
Table 3  Moisture absorption rate of SiOC aerogel/flexible ceramic fiber composite
Fig.9  Photos of flexibility test of SiOC aerogel/flexible ceramic fiber composite material in plane direction (a) unmodified insulation blanket, (b) sample 1# (c) sample 2#, (d) sample 3#, (e) sample 4#, (f) sample 5#, (g) sample 6#, (h) sample 7#
Fig.10  Photos of compression test of 6# sample
Fig.11  Stress-strain curve of compression test of sample 6#
1 Meng S H, Du S Y, Han J C. Research and development of thermal protection systems and materials [A]. Composite Materials——Basic, Innovative, Efficient: Proceedings of the 14th National Composite Materials Academic Conference (Part 1) [C]. Yichang: China Aerospace Press, 2006: 7
孟松鹤, 杜善义, 韩杰才. 热防护系统及材料的研究进展 [A]. 复合材料—基础、创新、高效: 第十四届全国复合材料学术会议论文集(上) [C]. 宜昌: 中国宇航出版社, 2006: 7
2 Shen Z C, Xia Y, Yang Y B, et al. Protection of materials and structures from space radiation environments on spacecraft [J]. Aerosp. Mater. Technol., 2020, 50(2): 1
沈自才, 夏 彦, 杨艳斌 等. 航天器空间辐射防护材料与防护结构 [J]. 宇航材料工艺, 2020, 50(2): 1
3 Shi Z H, Li K Z, Li H J, et al. Research status and application advance of heat resistant materials for space vehicles [J]. Mater. Rep., 2007, 21(8): 15
石振海, 李克智, 李贺军 等. 航天器热防护材料研究现状与发展趋势 [J]. 材料导报, 2007, 21(8): 15
4 Yang Y Z, Yang J L, Fang D N. Research progress on the thermal protection materials and structures in hypersonic vehicles [J]. Appl. Math. Mech., 2008, 29: 47
杨亚政, 杨嘉陵, 方岱宁. 高超声速飞行器热防护材料与结构的研究进展 [J]. 应用数学和力学, 2008, 29: 47
5 Myles T A, Tonawanda N Y. Flexible ceramic insulators for high temperature furnaces [P]. US Pat, 4240833, 1980
6 Chen Y F, Hong C Q, Hu C L, et al. Ceramic-based thermal protection materials for aerospace vehicles [J]. Adv. Ceram., 2017, 38: 311
陈玉峰, 洪长青, 胡成龙 等. 空天飞行器用热防护陶瓷材料 [J]. 现代技术陶瓷, 2017, 38: 311
7 Hoseini A, Bahrami M. Effects of humidity on thermal performance of aerogel insulation blankets [J]. J. Build. Eng., 2017, 13: 107
8 Chen C. Characterization of new silica fibers, preparation and properties of new silica fibers reinforced silica matrix composites [D]. Changsha: National University of Defense Technology, 2014
陈 晨. 新型石英纤维的表征及其石英基复合材料的制备与性能 [D]. 长沙: 国防科学技术大学, 2014
9 Lin H, Feng J, Feng J Z, et al. Development of thermal protection coatings for non-ablative thermal protection materials [J]. Mater. Rev., 2015, 29(21): 29
林 浩, 冯 坚, 冯军宗 等. 非烧蚀防隔热材料表面热防护涂层的研究进展 [J]. 材料导报, 2015, 29(21): 29
10 Xia G, Cheng W K, Qin Z Z. Development of flexible thermal protection for system inflatable re-entry vehicles [J]. Aerosp. Mater. Technol., 2003, 33(6): 1
夏 刚, 程文科, 秦子增. 充气式再入飞行器柔性热防护系统的发展状况 [J]. 宇航材料工艺, 2003, 33(6): 1
11 Devapal D, Gopakumar M P, Prabhakaran P V, et al. Ceramic coating on flexible external insulation blankets for reusable missions [J]. Curr. Sci., 2018, 114: 137
doi: 10.18520/cs/v114/i01/137-143
12 Kourtides D A, Churchward R A, Lowe D M. Protective coating for ceramic materials [P]. US Pat, 5296288, 1994
13 Nocentini K, Achard P, Biwole P, et al. Hygro-thermal properties of silica aerogel blankets dried using microwave heating for building thermal insulation [J]. Energy Build., 2018, 158: 14
doi: 10.1016/j.enbuild.2017.10.024
14 Hoseini A, Malekian A, Bahrami M. Deformation and thermal resistance study of aerogel blanket insulation material under uniaxial compression [J]. Energy Build., 2016, 130: 228
doi: 10.1016/j.enbuild.2016.08.053
15 Yang J, Li S K. Research on the dynamic mechanical property and failure mechanism of glass fiber reinforced aerogel [J]. Chin. J. Mater. Res., 2009, 23: 524
杨 杰, 李树奎. 玻璃纤维增强气凝胶的动态力学性能及其破坏机理 [J]. 材料研究学报, 2009, 23: 524
16 Gan L H, Chen L W, Zhang Y X. Preparation of Silica aerogels by non-supercritical drying [J]. Acta Phys. Chim. Sin., 2003, 19: 504
doi: 10.3866/PKU.WHXB20030605
甘礼华, 陈龙武, 张宇星. 非超临界干燥法制备SiO2气凝胶 [J]. 物理化学学报, 2003, 19: 504
17 Jones S M. Aerogel: Space exploration applications [J]. J. Sol-Gel Sci. Technol., 2006, 40: 351
doi: 10.1007/s10971-006-7762-7
18 Sorarù G D, Suttor D. High temperature stability of sol-gel-derived SiOC glasses [J]. J. Sol-Gel Sci. Technol., 1999, 14: 69
doi: 10.1023/A:1008775830830
19 Ma J, Ye F, Lin S J, et al. Large size and low density SiOC aerogel monolith prepared from triethoxyvinylsilane/tetraethoxysilane [J]. Ceram. Int., 2017, 43: 5774
doi: 10.1016/j.ceramint.2017.01.124
20 Jabbari M, Åkesson D, Skrifvars M, et al. Novel lightweight and highly thermally insulative silica aerogel-doped poly(vinyl chloride)-coated fabric composite [J]. J. Reinf. Plast. Compos., 2015, 34: 1581
doi: 10.1177/0731684415578306
21 Yang H L, Ni W, Liang T, et al. Preparation and characterization of nanoporous super insulation materials reinforced with aluminum silicate fiber [J]. J. Mater. Eng., 2007, (7): 63
杨海龙, 倪 文, 梁 涛 等. 硅酸铝纤维增强纳米孔绝热材料的制备与表征 [J]. 材料工程, 2007, (7): 63
22 Shi X J, Zhang R F, He S, et al. Synthesis and heat insulation performance of glass fiber reinforced SiO2 aerogel composites [J]. J. Chin. Ceram. Soc., 2016, 44: 129
石小靖, 张瑞芳, 何 松 等. 玻璃纤维增韧SiO2气凝胶复合材料的制备及隔热性能 [J]. 硅酸盐学报, 2016, 44: 129
23 Feng J Z, Feng J, Wang X D, et al. Preparation of flexible fiber-reinforced aerogel composites for thermal insulation [J]. Rare Met. Mater. Eng., 2008, 37(): 170
冯军宗, 冯 坚, 王小东 等. 纤维增强气凝胶柔性隔热复合材料的制备 [J]. 稀有金属材料与工程, 2008, 37(): 170
24 Yu Y X, Wu X Y, San H S. Preparation and characterization of hydrophobic SiO2-glass fibers aerogels via ambient pressure drying [J]. J. Mater. Eng., 2015, 43(8): 31
余煜玺, 吴晓云, 伞海生. 常压干燥制备疏水性SiO2-玻璃纤维复合气凝胶及表征 [J]. 材料工程, 2015, 43(8): 31
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!