|
|
Progress on Application of Bias Technology for Preparation of Diamond Films |
SHAO Siwu1, ZHENG Yuting1,2, AN Kang1,2, HUANG Yabo1, CHEN Liangxian1, LIU Jinlong1, WEI Junjun1, LI Chengming1( ) |
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 2.Shunde Graduate School, University of Science and Technology Beijing, Guangdong 528399, China |
|
Cite this article:
SHAO Siwu, ZHENG Yuting, AN Kang, HUANG Yabo, CHEN Liangxian, LIU Jinlong, WEI Junjun, LI Chengming. Progress on Application of Bias Technology for Preparation of Diamond Films. Chinese Journal of Materials Research, 2022, 36(3): 161-174.
|
Abstract In recent years, heteroepitaxial monocrystalline diamond has been grown by bias voltage technique and its size has been increased to over inch level. Since the application of bias can act as a means to significantly promote nuclear capability of diamound, therefore, the bias voltage technology may be used to prepare oriented diamond films, nano diamond films and ultra-nano diamond films etc. In this paper, the mechanism related with the action of bias technology, the forms and devices of bias technology, as well as the mechanism of surface reaction model, thermal peak model and sublayer injection model are reviewed. The commonly used bias techniques include DC bias, DC pulse bias, pulse overlap bias and bipolar pulse bias. The effect of bias voltage on the microstructure and properties of diamond films are also introduced, and the effect of applied bias voltage on the orientation growth, secondary nucleation rate, amorphous carbon-graphite-diamond phase transition, growth rate and bonding force of diamond films are described in detail. Biasing can change the energy of bombarded particles and the concentration of specific groups, affect the transformation of diamond phase and grain orientation and size, and then affect the optical, mechanical, thermal and electrical properties of diamond films. Some shortcomings in the present research work are also discussed, such as the mechanism related with the action of bias is still not clear, the change of electron concentration and the effect of hydrogen etching are still not clearly explained. Finally, the future research and application directions of bias voltage technology for diamond preparation are also prospected.
|
Received: 06 May 2021
|
|
Fund: National Key Research and Development Program of China(2018YFB0406500);National Key Research and Development Program of China(2016YFE0133200);European Union's Horizon 2020 Research and Innovation Staff Exchange (RISE) program(734578);Postdoctor Research Foundation of Shunde Graduate School of University of Science and Techonology Beijing(2020BH015) |
About author: LI Chengming, Tel: (010)62332390, E-mail: chengmli@mater.ustb.edu.cn
|
1 |
Zhang L, Zhou K, Wei Q, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage [J]. Appl. Energy, 2019, 233-234(JAN. 1): 208
|
2 |
Wang Y B, Huang N, Liu L S, et al. Preparation and cutting performance of diamond coated hard alloy cutting tools for 7075 aviation Al-alloy [J]. Chin. J. Mater. Res., 2019, 33(1): 15
|
|
王宜豹, 黄 楠, 刘鲁生 等. 加工7075航空铝合金用金刚石涂层刀具的制备及其切削性能 [J]. 材料研究学报, 2019, 33(1): 15
|
3 |
Garrett D J, Tong W, Simpson D A, et al. Diamond for neural interfacing: A review [J]. Carbon, 2016, 102: 437
|
4 |
Gao Y, Gao N, Li H, et al. Semiconductor SERS of diamond [J]. Nanoscale, 2018, 10(33): 15788
|
5 |
Yu Y, Qiu W Q, Pan J W, et al. Preparation of inlay structure diamond films on low-alloy steel substrate [J]. Chin. J. Mater. Res., 2013(02): 202
|
|
余 赟, 邱万奇, 潘建伟 等. 在低合金钢基体表面沉积镶嵌结构界面金刚石膜 [J]. 材料研究学报, 2013(02): 202
|
6 |
Navalons S, Dhakshinamoorthy A, Alvaro M, et al. Diamond nanoparticles in heterogeneous catalysis [J]. Chem. Mater., 2020, 32(10): 4116
|
7 |
Chae K W, Baik Y J, Park J K, et al. The 8 inch free standing CVD diamond wafer fabricated by DC-PACVD [J]. Diam. Relat. Mater., 2010, 19(10): 1168
|
8 |
Lu Y J, Lin C N, Shan C X, et al. Optoelectronic diamond: growth, properties, and photodetection applications [J]. Adv. Opt. Mater., 2018, 06(20): 1800359
|
9 |
Yuan X L, Zheng Y T, Zhu X H, et al. Recent progress in diamond based MOSFETs [J]. Int. J. Miner., Metall. Mater., 2019, 26(10): 1195
|
10 |
Yamada H, Chayahara A, Mokuno Y, et al. A 2-in mosaic wafer made of a single-crystal diamond [J]. Appl. Phys. Lett., 2014, 104(10): 102110
|
11 |
Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers [J]. Sci. Rep., 2017, 7(1): 1
|
12 |
Fujisaki T, Tachiki M, Taniyama N, et al. Initial growth of heteroepitaxial diamond on Ir(001)/MgO(001) substrates using antenna edge type microwave plasma assisted chemical vapor deposition [J]. Diam. Relat. Mater., 2003, 12(3-7): 246
|
13 |
Vaissiere N, Saada S, Bouttemy M, et al. Heteroepitaxial diamond on iridium: New insights on domain formation [J]. Diam. Relat. Mater., 2013, 36: 16
|
14 |
Sawabe A, Fukuda H, Suzuki T, et al. Interface between CVD diamond and iridium films [J]. Surf. Sci., 2000, 467(1-3): L845
|
15 |
Golding B, Bednarski-meinke C, Dai Z. Diamond heteroepitaxy: pattern formation and mechanisms [J]. Diam. Relat. Mater., 2004, 13(4-8): 545
|
16 |
Wang Y, Wang W, Shu G, et al. Virtues of Ir(100) substrate on diamond epitaxial growth: first-principle calculation and XPS study [J]. J. Cryst. Growth, 2021, 560: 126047
|
17 |
Arnault J C, Saada S, Delclos S, et al. Surface science contribution to the BEN control on Si(100) and 3C-SiC(100): towards ultrathin nanocrystalline diamond films [J]. Chem. Vap. Deposition, 2008, 14(7-8): 187
|
18 |
Hoffman A, Michaelson S, Akhvlediani R, et al. Comparison of diamond bias enhanced nucleation on Ir and 3C-SiC: A high resolution electron energy loss spectroscopy study [J]. Phys. Status Solidi A, 2009, 206(9): 1972
|
19 |
Tachibana T, Yokota Y, Hayashi K, et al. Growth of {111}-oriented diamond on Pt/Ir/Pt substrate deposited on sapphire [J]. Diam. Relat. Mater., 2001, 10(9-10): 1633
|
20 |
Gsell S, Fischer M, Brescia R, et al. Reduction of mosaic spread using iridium interlayers: A route to improved oxide heteroepitaxy on silicon [J]. Appl. Phys. Lett., 2007, 91(6): 061501
|
21 |
Gallheber B C, Fischer M, Mayr M, et al. Growth, stress, and defects of heteroepitaxial diamond on Ir/YSZ/Si(111) [J]. J. Appl. Phys., 2018, 123(22): 225302.1-225302.11
|
22 |
Chen Y C, Zhong X Y, Konicek A R, et al. Synthesis and characterization of smooth ultrananocrystalline diamond films via low pressure bias-enhanced nucleation and growth [J]. Appl. Phys. Lett., 2008, 92(13): 240
|
23 |
Vaissiere N, Saada S, Lee K H, et al. Porous diamond foam with nanometric diamond grains using Bias Enhanced Nucleation on iridium [J]. Diam. Relat. Mater., 2016, 68: 23
|
24 |
Teng K Y, Chen H C, Tzeng G C, et al. Bias-enhanced nucleation and growth processes for improving the electron field emission properties of diamond films [J]. J. Appl. Phys., 2012, 111(5): 53701
|
25 |
Fan B Q, Wang C X, Xu Y Z, et al. Influence of deposition pressure on micron-nanometer transition of diamond film [J]. Diamond & Abrasives Engineering., 2021, 41(01): 12
|
|
范冰庆, 王传新, 徐远钊 等. 沉积气压对金刚石膜微米纳米结构转变的影响 [J]. 金刚石与磨料磨具工程, 2021, 41(01): 12
|
26 |
Zhang X Q, Huang M D, Ke P L, et al. Impact of bias on the graphite-like carbon films grown by high power impulse magnetron sputtering [J]. Chin. J. Vac. Sci. Technol., 2013, 33(010): 969
|
|
张学谦, 黄美东, 柯培玲 等. 基体偏压对高功率脉冲磁控溅射制备类石墨碳膜的影响研究 [J]. 真空科学与技术学报, 2013, 33(010): 969
|
27 |
Huang M D, Xu S P, Liu Y, et al. Influence of negative bias on TiAlN films by arc ion plating [J]. Surf. Technol., 2012, 41(06): 1-3+6
|
|
黄美东, 许世鹏, 刘 野 等. 负偏压对电弧离子镀复合TiAlN薄膜的影响 [J]. 表面技术, 2012, 41(06): 1-3+6
|
28 |
Tang P, Wang Q M, Lin Songsheng, et al. Influence of substrate bias on the structure and properties of AlCrN coatings deposited by high power impulse magnetron sputtering [J]. Mater. Res. Appl., 2019, 13(04): 257
|
|
唐 鹏, 王启民, 林松盛 等. 基体偏压对高功率脉冲磁控溅射AlCrN涂层结构及其性能的影响 [J]. 材料研究与应用, 2019, 13(04): 257
|
29 |
Zheng Y L, Wu B Z, Yong Z, et al. Effects of superimposed pulse bias on TiN coating in cathodic arc deposition [J]. Surf. Coat. Technol., 2000, 131(1-3): 158
|
30 |
Schreck M. Single Crystal Diamond Growth on Iridium[M]. Compr. Hard Mater., 2014: 269
|
31 |
Shigesato Y, Boekenhauer R E, Sheldon B W, et al. Emission spectroscopy during direct-current-biased microwave-plasma chemical vapor deposition of diamond [J]. Appl. Phys. Lett., 1993, 63(3): 314
|
32 |
Yang G W, Mao Y D. Effect of bisa-enhanced nucleation in diamond films growth by CVD methods [J]. Vacuum, 1996(01): 30
|
|
杨国伟, 毛友德. CVD生长金刚石薄膜衬底负偏压增强成核效应 [J]. 真空, 1996(01): 30
|
33 |
Koehler J S, Seitz F. Steady-state processes not involving lattice rearrangement. Introductory paper [J]. Discuss. Faraday Soc., 1957, 23: 85
|
34 |
Weiler M, Robertson J, Sattel S, et al. Formation of highly tetrahedral amorphous hydrogenated carbon, ta-C:H [J]. Diam. Relat. Mater., 1995, 4(4): 268
|
35 |
Lifshitz Y, Kasi S R, Rabalais J W, et al. Subplantation model for film growth from hyperthermal species [J]. Phys. Rev. B, 1990, 41(15): 10468
|
36 |
Lifshitz Y, Kohler T, Frauenheim T, et al. The mechanism of diamond nucleation from energetic species [J]. Science, 2002, 297(5586): 1531
|
37 |
Yao Y, Liao M Y, Koehler T, et al. Diamond nucleation by energetic pure carbon bombardment [J]. Phys. Rev. B, 2005, 72(3): p.035402.1-035402.5
|
38 |
Huang Y B, Chen L X, Jia X, et al. Microstructure, hardness and optical properties of Er2O3 films deposited on diamond-coated and Si(100) substrates by radio frequency magnetron sputtering [J]. Thin Solid Films, 2020, 709: 138131
|
39 |
Forniés E, Galindo R E, Sánchez O, et al. Growth of CrNx films by DC reactive magnetron sputtering at constant N2/Ar gas flow [J]. Surf. Coat. Technol., 2006, 200(20-21): 6047
|
40 |
Fujisaki T, Tachiki M, Taniyama N, et al. Fabrication of heteroepitaxial diamond thin films on Ir(001)/MgO(001) substrates using antenna-edge-type microwave plasma-assisted chemical vapor deposition [J]. Diam. Relat. Mater., 2002, 11(3-6): 478
|
41 |
Huang M D, Sun C, Lin G Q, et al. Mechanical property of low temperature deposited TiN film by pulsed biased arc ion plating [J]. Acta Metall. Sin., 2003, 39(05): 516
|
|
黄美东, 孙 超, 林国强 等. 脉冲偏压电弧离子低温沉积TiN硬质薄膜的力学性能 [J]. 金属学报, 2003, 39(05): 516
|
42 |
Suto T, Yaita J, Iwasaki T, et al. Highly oriented diamond (111) films synthesized by pulse bias-enhanced nucleation and epitaxial grain selection on a 3C-SiC/Si (111) substrate [J]. Appl. Phys. Lett., 2017, 110(6): 062102
|
43 |
Zhang P, Du J, Tian F, et al. Research status quo of pulsed bias arc ion plating [J]. Journal Of Academy Of Armored Force Engineering, 2009(02): 71
|
|
张 平, 杜 军, 田 飞 等. 脉冲偏压离子镀的研究现状 [J]. 装甲兵工程学院学报, 2009(02): 71
|
44 |
Regmi M, More K, Eres G. A narrow biasing window for high density diamond nucleation on Ir/YSZ/Si(100) using microwave plasma chemical vapor deposition [J]. Diam. Relat. Mater., 2012, 23: 28
|
45 |
Yaita J, Iwasaki T, Natal M, et al. Heteroepitaxial growth of diamond films on 3C-SiC(001)/Si substrates by antenna-edge microwave plasma CVD[C]// 2014 International Conference on Solid State Devices and Materials. 2014
|
46 |
Arnault J C, Vonau F, Mermoux M, et al. Surface study of iridium buffer layers during the diamond bias enhanced nucleation in a HFCVD reactor [J]. Diam. Relat. Mater., 2004, 13(3): 401
|
47 |
Ohtsuka K, Suzuki K, Sawabe A, et al. Epitaxial growth of diamond on iridium [J]. Jpn. J. Appl. Phys., 1996, 35(8B): L1072
|
48 |
Lim S H, Yoon H S, Moon J H, et al. Optical emission spectroscopy study for optimization of carbon nanotubes growth by a triode plasma chemical vapor deposition [J]. Appl. Phys. Lett., 2006, 88(3): 033114
|
49 |
Schreck M, Stritzker B. Nucleation and growth of heteroepitaxial diamond films on silicon [J]. Phys. Status Solidi, 2010, 154(1): 197
|
50 |
Kátai S, Kováts A, Maros I, et al. Ion energy distributions and their evolution during bias-enhanced nucleation of chemical vapor deposition of diamond [J]. Diam. Relat. Mater., 2000, 9(3-6): 317
|
51 |
Katai S, Tass Z, Hars G, et al. Measurement of ion energy distributions in the bias enhanced nucleation of chemical vapor deposited diamond [J]. J. Appl. Phys., 1999, 86(10): 5549
|
52 |
Gerber J, Weiler M, Sohr O, et al. Investigations of diamond nucleation on a-C films generated by d.c. bias and microwave plasma [J]. Diam. Relat. Mater., 1994, 3(4-6): 506
|
53 |
Bauer T, Schreck M, Hormann F, et al. Analysis of the total carbon deposition during the bias enhanced nucleation of diamond on Ir/SrTiO3 (001) using 13C-methane [J]. Diam. Relat. Mater., 2002, 11(3-6): 493
|
54 |
Hörmann F, Bauer T, Schreck M, et al. TEM analysis of nanometer-size surface structures formed by bias enhanced nucleation of diamond on iridium [J]. Diam. Relat. Mater., 2003, 12(3-7): 350
|
55 |
Li Y F, She J M, Su J J, et al. Heteroepitaxial nucleation of diamond on Ir(100)/MgO(100) substrate by bias enhanced microwave plasma chemical vapor deposition method [J]. J. Synth. Cryst., 2015, 04: 896
|
|
李义锋, 佘建民, 苏静杰 等. 偏压加强MPCVD法Ir(100)/MgO(100)基片上金刚石异质外延形核 [J]. 人工晶体学报, 2015, 04: 896
|
56 |
Yoshikawa T, Herrling D, Meyer F, et al. Influence of substrate holder configurations on bias enhanced nucleation area for diamond heteroepitaxy: Toward wafer-scale single-crystalline diamond synthesis [J]. J. Vac. Sci. Technol., 2019, 37(2): 021207
|
57 |
Yugo S, Kanai T, Kimura T, et al. Generation of diamond nuclei by electric field in plasma chemical vapor deposition [J]. Appl. Phys. Lett., 1991, 58(10): 1036
|
58 |
Jiang X, Jia C L. The coalescence of [001] diamond grains heteroepitaxially grown on (001) silicon [J]. Appl. Phys. Lett., 1996, 69(25): 3902
|
59 |
Schreck M, Hörmann F, Roll H, et al. Diamond nucleation on iridium buffer layers and subsequent textured growth: A route for the realization of single-crystal diamond films [J]. Appl. Phys. Lett., 2001, 78(2): 192
|
60 |
Ichikawa K, Kurone K, Kodama H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir [J]. Diam. Relat. Mater., 2019, 94: 92
|
61 |
Ichikawa K, Kodama H, Suzuki K, et al. Effect of stripe orientation on dislocation propagation in epitaxial lateral overgrowth diamond on Ir [J]. Diam. Relat. Mater., 2017, 72: 114
|
62 |
Aida H, Kim S W, Ikejiri K, et al. Microneedle growth method as an innovative approach for growing freestanding single crystal diamond substrate: Detailed study on the growth scheme of continuous diamond layers on diamond microneedles [J]. Diam. Relat. Mater., 2016, 75: 34
|
63 |
McGinnis S P, Kelly M A, Hagstrom S B. Evidence of an energetic ion bombardment mechanism for bias‐enhanced nucleation of diamond [J]. Appl. Phys. Lett., 1995, 66(23): 3117
|
64 |
Mcginnis S P, Kelly M A, Hagstrom S B. Insights into the ion-assisted nucleation of diamond on silicon [J]. J. Mater. Res., 1997, 12(12): 3354
|
65 |
Robertson J, Gerber J, Sattel S, et al. Mechanism of bias‐enhanced nucleation of diamond on Si [J]. Appl. Phys. Lett., 1995, 66(24): 3287
|
66 |
Tang Y H, Golding B. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth [J]. Appl. Phys. Lett., 2016, 108(5): 052101
|
67 |
Kawarada H, Wild C, Herres N, et al. Heteroepitaxial growth of highly oriented diamond on cubic silicon carbide [J]. J. Appl. Phys., 1997, 81(8): 3490
|
68 |
Shintani Y. Growth of highly (111)-oriented, highly coalesced diamond films on platinum (111) surface: A possibility of heteroepitaxy [J]. J. Mater. Res., 1996, 11(12): 2955
|
69 |
Lee J S, Liu K S, Lin I N. Direct‐current bias effect on the synthesis of (001) textured diamond films on silicon [J]. Appl. Phys. Lett., 1995, 67(11): 1555
|
70 |
Schreck M, Thürer K H, Klarmann R, et al. Influence of the nucleation process on the azimuthal misorientation of heteroepitaxial diamond films on Si(001) [J]. J. Appl. Phys., 1997, 81(7): 3096
|
71 |
Thürer K H, Schreck M, Stritzker B, et al. Growth and defects of diamond facets under negative biasing conditions in a microwave plasma CVD process [J]. Diam. Relat. Mater., 1997, 6(8): 1010
|
72 |
Thürer K H, Schreck M, Stritzker B. Limiting processes for diamond epitaxial alignment on silicon [J]. Phys. Rev. B, 1998, 57(24): 15454
|
73 |
Saravanan A, Huang B R, Sankaran K J, et al. Structural modification of nanocrystalline diamond films via positive/negative bias enhanced nucleation and growth processes for improving their electron field emission properties [J]. J. Appl. Phys., 2015, 117(21): 215307
|
74 |
Teng K Y, Chen H C, Tzeng G C, et al. Bias-enhanced nucleation and growth processes for improving the electron field emission properties of diamond films [J]. J. Appl. Phys., 2012, 111(5): 053701
|
75 |
Liu C X, Li L L, Wang S F, et al. Effect of bias on structure and tribological properties of diamond-like carbon films [J]. Surf. Technol., 2020, 49(3): 141
|
|
刘长鑫, 李璐璐, 王少峰 等. 偏压对DLC薄膜结构及摩擦学性能的影响 [J]. 表面技术, 2020, 49(3): 141
|
76 |
Saravanan A, Huang B R, Sankaran K J, et al. Bias-enhanced post-treatment process for enhancing the electron field emission properties of ultrananocrystalline diamond films [J]. Appl. Phys. Lett., 2015, 106(11): 140
|
77 |
Sankaran K J, Huang B R, Saravanan A, et al. Nitrogen incorporated ultrananocrystalline diamond microstructures from bias-enhanced microwave N2/CH4-plasma chemical vapor deposition [J]. Plasma Processes Polym., 2016, 13(4): 419
|
78 |
Ali A M, Egiza M, Murasawa K, et al. Negative bias effects on deposition and mechanical properties of ultrananocrystalline diamond/amorphous carbon composite films deposited on cemented carbide substrates by coaxial arc plasma [J]. Diam. Relat. Mater., 2019, 96: 67
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|