Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (3): 161-174    DOI: 10.11901/1005.3093.2021.287
REVIEWS Current Issue | Archive | Adv Search |
Progress on Application of Bias Technology for Preparation of Diamond Films
SHAO Siwu1, ZHENG Yuting1,2, AN Kang1,2, HUANG Yabo1, CHEN Liangxian1, LIU Jinlong1, WEI Junjun1, LI Chengming1()
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Shunde Graduate School, University of Science and Technology Beijing, Guangdong 528399, China
Cite this article: 

SHAO Siwu, ZHENG Yuting, AN Kang, HUANG Yabo, CHEN Liangxian, LIU Jinlong, WEI Junjun, LI Chengming. Progress on Application of Bias Technology for Preparation of Diamond Films. Chinese Journal of Materials Research, 2022, 36(3): 161-174.

Download:  HTML  PDF(13414KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, heteroepitaxial monocrystalline diamond has been grown by bias voltage technique and its size has been increased to over inch level. Since the application of bias can act as a means to significantly promote nuclear capability of diamound, therefore, the bias voltage technology may be used to prepare oriented diamond films, nano diamond films and ultra-nano diamond films etc. In this paper, the mechanism related with the action of bias technology, the forms and devices of bias technology, as well as the mechanism of surface reaction model, thermal peak model and sublayer injection model are reviewed. The commonly used bias techniques include DC bias, DC pulse bias, pulse overlap bias and bipolar pulse bias. The effect of bias voltage on the microstructure and properties of diamond films are also introduced, and the effect of applied bias voltage on the orientation growth, secondary nucleation rate, amorphous carbon-graphite-diamond phase transition, growth rate and bonding force of diamond films are described in detail. Biasing can change the energy of bombarded particles and the concentration of specific groups, affect the transformation of diamond phase and grain orientation and size, and then affect the optical, mechanical, thermal and electrical properties of diamond films. Some shortcomings in the present research work are also discussed, such as the mechanism related with the action of bias is still not clear, the change of electron concentration and the effect of hydrogen etching are still not clearly explained. Finally, the future research and application directions of bias voltage technology for diamond preparation are also prospected.

Key words:  review      chemical vapor deposition      bias voltage      diamond films      heteroepitaxial growth     
Received:  06 May 2021     
ZTFLH:  TB34  
Fund: National Key Research and Development Program of China(2018YFB0406500);National Key Research and Development Program of China(2016YFE0133200);European Union's Horizon 2020 Research and Innovation Staff Exchange (RISE) program(734578);Postdoctor Research Foundation of Shunde Graduate School of University of Science and Techonology Beijing(2020BH015)
About author:  LI Chengming, Tel: (010)62332390, E-mail: chengmli@mater.ustb.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.287     OR     https://www.cjmr.org/EN/Y2022/V36/I3/161

Fig.1  Schema of a plasma discharge and its modification during BEN[30]
Fig.2  Reaction on the surface of silicon substrate during bias processing
Fig.3  Schema of how subplanted ions increase local density (a) and thermal spike introduced by ion subplantation (b) [34]
Fig.4  Figure shows the pathway of conversion of diamond like clusters to diamond clusters[36]
Fig.5  DC bias voltage (a), DC pulsed bias voltage (b), pulse superposition bias voltage (c) and bi-directional pulsed bias voltage (d) [43]
Fig.6  Typical bias assisted CVD equipments[44~47] (a) commercial Microwave Plasma CVD, (b) Antenna-Edge Microwave Plasma CVD, (c) Dc plasma CVD, (d) HFCVD system
Fig.7  Intensity distribution of several ion species for typical BEN conditions (P=25 mbar, T=800℃, MW power=900 W, Ubias=-200 V, 100 sccm H2, 0.25 sccm CH4) (a), total ion fluxes of different groups of ions as a function of bias voltage (b) CSum—the total flux of carbon containing C x H y+, HSum—the total flux of Hy+ and AllSum—the total measured ion flux [51]
Fig.8  Hetero-epitaxial nucleation process on Ir substrate under BEN: the ion bombardment induced-buried lateral growth mechanism[11]
Fig.9  Nucleation density on Si vs bias voltage for 2%, 5%, and 15% methane concentration (a) and the nucleation density on Ir and the bias current vs bias voltage for 1% methane concentration (b)
Fig.10  Heteroepitaxial diamond growth on different substrate materials: (a) (100) 3C-SiC, (b) (100) β-SiC, (c) (100) Si, (d) (111) Pt, (e) (100) Ir, (f) (111) 3C-SiC[42, 58, 67, 68]
Fig.11  Variation of the process time window for oriented nucleation of diamond on Si (001) with the bias voltage, Filled circles mark heteroepitaxial films, while empty triangles correspond to samples without preferential azimuthal alignment (a) and 10 μm thick diamond films after 15 min exposure to the biasing conditions Ubias= -200 V[72] (b)
Fig.12  SEM micrographs of beg-NCD films grown under 0 V (a), -100 V (b), -200 V (c) and -300 V (d) with the inset showing the cross sectional SEM micrographs [73]
Fig.13  SEM micrographs with the insets showing the corresponding Raman spectra and HRTEM images for (a) (d) NUNCDB10 films, (b) (e) NUNCDB30 films, and (c) (f) NUNCDB60 films, which were grown in N2/CH4 plasma under -250 V bias voltage for 10, 30, and 60 min, respectively[72]
Fig.14  Microscopic images of Cross-sectional (a) and scratch tracks of UNCD/a-C films deposited at un-bias (c) and cross-sectional (b) and scratch tracks of UNCD/a-C films deposited at bias frequency of 40 kHz[78] (d)
1 Zhang L, Zhou K, Wei Q, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage [J]. Appl. Energy, 2019, 233-234(JAN. 1): 208
2 Wang Y B, Huang N, Liu L S, et al. Preparation and cutting performance of diamond coated hard alloy cutting tools for 7075 aviation Al-alloy [J]. Chin. J. Mater. Res., 2019, 33(1): 15
王宜豹, 黄 楠, 刘鲁生 等. 加工7075航空铝合金用金刚石涂层刀具的制备及其切削性能 [J]. 材料研究学报, 2019, 33(1): 15
3 Garrett D J, Tong W, Simpson D A, et al. Diamond for neural interfacing: A review [J]. Carbon, 2016, 102: 437
4 Gao Y, Gao N, Li H, et al. Semiconductor SERS of diamond [J]. Nanoscale, 2018, 10(33): 15788
5 Yu Y, Qiu W Q, Pan J W, et al. Preparation of inlay structure diamond films on low-alloy steel substrate [J]. Chin. J. Mater. Res., 2013(02): 202
余 赟, 邱万奇, 潘建伟 等. 在低合金钢基体表面沉积镶嵌结构界面金刚石膜 [J]. 材料研究学报, 2013(02): 202
6 Navalons S, Dhakshinamoorthy A, Alvaro M, et al. Diamond nanoparticles in heterogeneous catalysis [J]. Chem. Mater., 2020, 32(10): 4116
7 Chae K W, Baik Y J, Park J K, et al. The 8 inch free standing CVD diamond wafer fabricated by DC-PACVD [J]. Diam. Relat. Mater., 2010, 19(10): 1168
8 Lu Y J, Lin C N, Shan C X, et al. Optoelectronic diamond: growth, properties, and photodetection applications [J]. Adv. Opt. Mater., 2018, 06(20): 1800359
9 Yuan X L, Zheng Y T, Zhu X H, et al. Recent progress in diamond based MOSFETs [J]. Int. J. Miner., Metall. Mater., 2019, 26(10): 1195
10 Yamada H, Chayahara A, Mokuno Y, et al. A 2-in mosaic wafer made of a single-crystal diamond [J]. Appl. Phys. Lett., 2014, 104(10): 102110
11 Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers [J]. Sci. Rep., 2017, 7(1): 1
12 Fujisaki T, Tachiki M, Taniyama N, et al. Initial growth of heteroepitaxial diamond on Ir(001)/MgO(001) substrates using antenna edge type microwave plasma assisted chemical vapor deposition [J]. Diam. Relat. Mater., 2003, 12(3-7): 246
13 Vaissiere N, Saada S, Bouttemy M, et al. Heteroepitaxial diamond on iridium: New insights on domain formation [J]. Diam. Relat. Mater., 2013, 36: 16
14 Sawabe A, Fukuda H, Suzuki T, et al. Interface between CVD diamond and iridium films [J]. Surf. Sci., 2000, 467(1-3): L845
15 Golding B, Bednarski-meinke C, Dai Z. Diamond heteroepitaxy: pattern formation and mechanisms [J]. Diam. Relat. Mater., 2004, 13(4-8): 545
16 Wang Y, Wang W, Shu G, et al. Virtues of Ir(100) substrate on diamond epitaxial growth: first-principle calculation and XPS study [J]. J. Cryst. Growth, 2021, 560: 126047
17 Arnault J C, Saada S, Delclos S, et al. Surface science contribution to the BEN control on Si(100) and 3C-SiC(100): towards ultrathin nanocrystalline diamond films [J]. Chem. Vap. Deposition, 2008, 14(7-8): 187
18 Hoffman A, Michaelson S, Akhvlediani R, et al. Comparison of diamond bias enhanced nucleation on Ir and 3C-SiC: A high resolution electron energy loss spectroscopy study [J]. Phys. Status Solidi A, 2009, 206(9): 1972
19 Tachibana T, Yokota Y, Hayashi K, et al. Growth of {111}-oriented diamond on Pt/Ir/Pt substrate deposited on sapphire [J]. Diam. Relat. Mater., 2001, 10(9-10): 1633
20 Gsell S, Fischer M, Brescia R, et al. Reduction of mosaic spread using iridium interlayers: A route to improved oxide heteroepitaxy on silicon [J]. Appl. Phys. Lett., 2007, 91(6): 061501
21 Gallheber B C, Fischer M, Mayr M, et al. Growth, stress, and defects of heteroepitaxial diamond on Ir/YSZ/Si(111) [J]. J. Appl. Phys., 2018, 123(22): 225302.1-225302.11
22 Chen Y C, Zhong X Y, Konicek A R, et al. Synthesis and characterization of smooth ultrananocrystalline diamond films via low pressure bias-enhanced nucleation and growth [J]. Appl. Phys. Lett., 2008, 92(13): 240
23 Vaissiere N, Saada S, Lee K H, et al. Porous diamond foam with nanometric diamond grains using Bias Enhanced Nucleation on iridium [J]. Diam. Relat. Mater., 2016, 68: 23
24 Teng K Y, Chen H C, Tzeng G C, et al. Bias-enhanced nucleation and growth processes for improving the electron field emission properties of diamond films [J]. J. Appl. Phys., 2012, 111(5): 53701
25 Fan B Q, Wang C X, Xu Y Z, et al. Influence of deposition pressure on micron-nanometer transition of diamond film [J]. Diamond & Abrasives Engineering., 2021, 41(01): 12
范冰庆, 王传新, 徐远钊 等. 沉积气压对金刚石膜微米纳米结构转变的影响 [J]. 金刚石与磨料磨具工程, 2021, 41(01): 12
26 Zhang X Q, Huang M D, Ke P L, et al. Impact of bias on the graphite-like carbon films grown by high power impulse magnetron sputtering [J]. Chin. J. Vac. Sci. Technol., 2013, 33(010): 969
张学谦, 黄美东, 柯培玲 等. 基体偏压对高功率脉冲磁控溅射制备类石墨碳膜的影响研究 [J]. 真空科学与技术学报, 2013, 33(010): 969
27 Huang M D, Xu S P, Liu Y, et al. Influence of negative bias on TiAlN films by arc ion plating [J]. Surf. Technol., 2012, 41(06): 1-3+6
黄美东, 许世鹏, 刘 野 等. 负偏压对电弧离子镀复合TiAlN薄膜的影响 [J]. 表面技术, 2012, 41(06): 1-3+6
28 Tang P, Wang Q M, Lin Songsheng, et al. Influence of substrate bias on the structure and properties of AlCrN coatings deposited by high power impulse magnetron sputtering [J]. Mater. Res. Appl., 2019, 13(04): 257
唐 鹏, 王启民, 林松盛 等. 基体偏压对高功率脉冲磁控溅射AlCrN涂层结构及其性能的影响 [J]. 材料研究与应用, 2019, 13(04): 257
29 Zheng Y L, Wu B Z, Yong Z, et al. Effects of superimposed pulse bias on TiN coating in cathodic arc deposition [J]. Surf. Coat. Technol., 2000, 131(1-3): 158
30 Schreck M. Single Crystal Diamond Growth on Iridium[M]. Compr. Hard Mater., 2014: 269
31 Shigesato Y, Boekenhauer R E, Sheldon B W, et al. Emission spectroscopy during direct-current-biased microwave-plasma chemical vapor deposition of diamond [J]. Appl. Phys. Lett., 1993, 63(3): 314
32 Yang G W, Mao Y D. Effect of bisa-enhanced nucleation in diamond films growth by CVD methods [J]. Vacuum, 1996(01): 30
杨国伟, 毛友德. CVD生长金刚石薄膜衬底负偏压增强成核效应 [J]. 真空, 1996(01): 30
33 Koehler J S, Seitz F. Steady-state processes not involving lattice rearrangement. Introductory paper [J]. Discuss. Faraday Soc., 1957, 23: 85
34 Weiler M, Robertson J, Sattel S, et al. Formation of highly tetrahedral amorphous hydrogenated carbon, ta-C:H [J]. Diam. Relat. Mater., 1995, 4(4): 268
35 Lifshitz Y, Kasi S R, Rabalais J W, et al. Subplantation model for film growth from hyperthermal species [J]. Phys. Rev. B, 1990, 41(15): 10468
36 Lifshitz Y, Kohler T, Frauenheim T, et al. The mechanism of diamond nucleation from energetic species [J]. Science, 2002, 297(5586): 1531
37 Yao Y, Liao M Y, Koehler T, et al. Diamond nucleation by energetic pure carbon bombardment [J]. Phys. Rev. B, 2005, 72(3): p.035402.1-035402.5
38 Huang Y B, Chen L X, Jia X, et al. Microstructure, hardness and optical properties of Er2O3 films deposited on diamond-coated and Si(100) substrates by radio frequency magnetron sputtering [J]. Thin Solid Films, 2020, 709: 138131
39 Forniés E, Galindo R E, Sánchez O, et al. Growth of CrNx films by DC reactive magnetron sputtering at constant N2/Ar gas flow [J]. Surf. Coat. Technol., 2006, 200(20-21): 6047
40 Fujisaki T, Tachiki M, Taniyama N, et al. Fabrication of heteroepitaxial diamond thin films on Ir(001)/MgO(001) substrates using antenna-edge-type microwave plasma-assisted chemical vapor deposition [J]. Diam. Relat. Mater., 2002, 11(3-6): 478
41 Huang M D, Sun C, Lin G Q, et al. Mechanical property of low temperature deposited TiN film by pulsed biased arc ion plating [J]. Acta Metall. Sin., 2003, 39(05): 516
黄美东, 孙 超, 林国强 等. 脉冲偏压电弧离子低温沉积TiN硬质薄膜的力学性能 [J]. 金属学报, 2003, 39(05): 516
42 Suto T, Yaita J, Iwasaki T, et al. Highly oriented diamond (111) films synthesized by pulse bias-enhanced nucleation and epitaxial grain selection on a 3C-SiC/Si (111) substrate [J]. Appl. Phys. Lett., 2017, 110(6): 062102
43 Zhang P, Du J, Tian F, et al. Research status quo of pulsed bias arc ion plating [J]. Journal Of Academy Of Armored Force Engineering, 2009(02): 71
张 平, 杜 军, 田 飞 等. 脉冲偏压离子镀的研究现状 [J]. 装甲兵工程学院学报, 2009(02): 71
44 Regmi M, More K, Eres G. A narrow biasing window for high density diamond nucleation on Ir/YSZ/Si(100) using microwave plasma chemical vapor deposition [J]. Diam. Relat. Mater., 2012, 23: 28
45 Yaita J, Iwasaki T, Natal M, et al. Heteroepitaxial growth of diamond films on 3C-SiC(001)/Si substrates by antenna-edge microwave plasma CVD[C]// 2014 International Conference on Solid State Devices and Materials. 2014
46 Arnault J C, Vonau F, Mermoux M, et al. Surface study of iridium buffer layers during the diamond bias enhanced nucleation in a HFCVD reactor [J]. Diam. Relat. Mater., 2004, 13(3): 401
47 Ohtsuka K, Suzuki K, Sawabe A, et al. Epitaxial growth of diamond on iridium [J]. Jpn. J. Appl. Phys., 1996, 35(8B): L1072
48 Lim S H, Yoon H S, Moon J H, et al. Optical emission spectroscopy study for optimization of carbon nanotubes growth by a triode plasma chemical vapor deposition [J]. Appl. Phys. Lett., 2006, 88(3): 033114
49 Schreck M, Stritzker B. Nucleation and growth of heteroepitaxial diamond films on silicon [J]. Phys. Status Solidi, 2010, 154(1): 197
50 Kátai S, Kováts A, Maros I, et al. Ion energy distributions and their evolution during bias-enhanced nucleation of chemical vapor deposition of diamond [J]. Diam. Relat. Mater., 2000, 9(3-6): 317
51 Katai S, Tass Z, Hars G, et al. Measurement of ion energy distributions in the bias enhanced nucleation of chemical vapor deposited diamond [J]. J. Appl. Phys., 1999, 86(10): 5549
52 Gerber J, Weiler M, Sohr O, et al. Investigations of diamond nucleation on a-C films generated by d.c. bias and microwave plasma [J]. Diam. Relat. Mater., 1994, 3(4-6): 506
53 Bauer T, Schreck M, Hormann F, et al. Analysis of the total carbon deposition during the bias enhanced nucleation of diamond on Ir/SrTiO3 (001) using 13C-methane [J]. Diam. Relat. Mater., 2002, 11(3-6): 493
54 Hörmann F, Bauer T, Schreck M, et al. TEM analysis of nanometer-size surface structures formed by bias enhanced nucleation of diamond on iridium [J]. Diam. Relat. Mater., 2003, 12(3-7): 350
55 Li Y F, She J M, Su J J, et al. Heteroepitaxial nucleation of diamond on Ir(100)/MgO(100) substrate by bias enhanced microwave plasma chemical vapor deposition method [J]. J. Synth. Cryst., 2015, 04: 896
李义锋, 佘建民, 苏静杰 等. 偏压加强MPCVD法Ir(100)/MgO(100)基片上金刚石异质外延形核 [J]. 人工晶体学报, 2015, 04: 896
56 Yoshikawa T, Herrling D, Meyer F, et al. Influence of substrate holder configurations on bias enhanced nucleation area for diamond heteroepitaxy: Toward wafer-scale single-crystalline diamond synthesis [J]. J. Vac. Sci. Technol., 2019, 37(2): 021207
57 Yugo S, Kanai T, Kimura T, et al. Generation of diamond nuclei by electric field in plasma chemical vapor deposition [J]. Appl. Phys. Lett., 1991, 58(10): 1036
58 Jiang X, Jia C L. The coalescence of [001] diamond grains heteroepitaxially grown on (001) silicon [J]. Appl. Phys. Lett., 1996, 69(25): 3902
59 Schreck M, Hörmann F, Roll H, et al. Diamond nucleation on iridium buffer layers and subsequent textured growth: A route for the realization of single-crystal diamond films [J]. Appl. Phys. Lett., 2001, 78(2): 192
60 Ichikawa K, Kurone K, Kodama H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir [J]. Diam. Relat. Mater., 2019, 94: 92
61 Ichikawa K, Kodama H, Suzuki K, et al. Effect of stripe orientation on dislocation propagation in epitaxial lateral overgrowth diamond on Ir [J]. Diam. Relat. Mater., 2017, 72: 114
62 Aida H, Kim S W, Ikejiri K, et al. Microneedle growth method as an innovative approach for growing freestanding single crystal diamond substrate: Detailed study on the growth scheme of continuous diamond layers on diamond microneedles [J]. Diam. Relat. Mater., 2016, 75: 34
63 McGinnis S P, Kelly M A, Hagstrom S B. Evidence of an energetic ion bombardment mechanism for bias‐enhanced nucleation of diamond [J]. Appl. Phys. Lett., 1995, 66(23): 3117
64 Mcginnis S P, Kelly M A, Hagstrom S B. Insights into the ion-assisted nucleation of diamond on silicon [J]. J. Mater. Res., 1997, 12(12): 3354
65 Robertson J, Gerber J, Sattel S, et al. Mechanism of bias‐enhanced nucleation of diamond on Si [J]. Appl. Phys. Lett., 1995, 66(24): 3287
66 Tang Y H, Golding B. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth [J]. Appl. Phys. Lett., 2016, 108(5): 052101
67 Kawarada H, Wild C, Herres N, et al. Heteroepitaxial growth of highly oriented diamond on cubic silicon carbide [J]. J. Appl. Phys., 1997, 81(8): 3490
68 Shintani Y. Growth of highly (111)-oriented, highly coalesced diamond films on platinum (111) surface: A possibility of heteroepitaxy [J]. J. Mater. Res., 1996, 11(12): 2955
69 Lee J S, Liu K S, Lin I N. Direct‐current bias effect on the synthesis of (001) textured diamond films on silicon [J]. Appl. Phys. Lett., 1995, 67(11): 1555
70 Schreck M, Thürer K H, Klarmann R, et al. Influence of the nucleation process on the azimuthal misorientation of heteroepitaxial diamond films on Si(001) [J]. J. Appl. Phys., 1997, 81(7): 3096
71 Thürer K H, Schreck M, Stritzker B, et al. Growth and defects of diamond facets under negative biasing conditions in a microwave plasma CVD process [J]. Diam. Relat. Mater., 1997, 6(8): 1010
72 Thürer K H, Schreck M, Stritzker B. Limiting processes for diamond epitaxial alignment on silicon [J]. Phys. Rev. B, 1998, 57(24): 15454
73 Saravanan A, Huang B R, Sankaran K J, et al. Structural modification of nanocrystalline diamond films via positive/negative bias enhanced nucleation and growth processes for improving their electron field emission properties [J]. J. Appl. Phys., 2015, 117(21): 215307
74 Teng K Y, Chen H C, Tzeng G C, et al. Bias-enhanced nucleation and growth processes for improving the electron field emission properties of diamond films [J]. J. Appl. Phys., 2012, 111(5): 053701
75 Liu C X, Li L L, Wang S F, et al. Effect of bias on structure and tribological properties of diamond-like carbon films [J]. Surf. Technol., 2020, 49(3): 141
刘长鑫, 李璐璐, 王少峰 等. 偏压对DLC薄膜结构及摩擦学性能的影响 [J]. 表面技术, 2020, 49(3): 141
76 Saravanan A, Huang B R, Sankaran K J, et al. Bias-enhanced post-treatment process for enhancing the electron field emission properties of ultrananocrystalline diamond films [J]. Appl. Phys. Lett., 2015, 106(11): 140
77 Sankaran K J, Huang B R, Saravanan A, et al. Nitrogen incorporated ultrananocrystalline diamond microstructures from bias-enhanced microwave N2/CH4-plasma chemical vapor deposition [J]. Plasma Processes Polym., 2016, 13(4): 419
78 Ali A M, Egiza M, Murasawa K, et al. Negative bias effects on deposition and mechanical properties of ultrananocrystalline diamond/amorphous carbon composite films deposited on cemented carbide substrates by coaxial arc plasma [J]. Diam. Relat. Mater., 2019, 96: 67
[1] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[2] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[4] HE Ying, LI Chaoqun, CHEN Xiaoli, LONG Zhimei, LAI Jiaqi, SHAO Bin, MA Yilong, CHEN Dengming, DONG Jiling. Recent Development for Preparation Processes of Sm2Fe17N x Powders with High Magnetic Properties[J]. 材料研究学报, 2022, 36(5): 321-331.
[5] ZHAO Ning, JIAO Da, ZHU Yankun, LIU Dexue, LIU Zengqian, ZHANG Zhefeng. Material Science Mechanism for Efficient Protection of Natural Armor[J]. 材料研究学报, 2022, 36(1): 1-7.
[6] SONG Xiaolong, LUO Weijing, NAN Yanli. A Review for Synthesis and Applications of Carbon Nanohorns[J]. 材料研究学报, 2021, 35(6): 401-410.
[7] ZHAO Wanli, SUO Hongli, LIU Min, MA Lin, DAI Yinming, ZHANG Zili. Research Progress in Preparation of MgB2 Bulk by Diffusion Method[J]. 材料研究学报, 2021, 35(6): 411-418.
[8] LANG Zhenqian, YE Zheng, YANG Jian, HUANG Jihua. Research Progress of Repair Technology for Surface Defects of Single Crystal Superalloy[J]. 材料研究学报, 2021, 35(3): 161-174.
[9] LI Zhuang, XU Qiujie, LIU Guojin, ZHANG Yunxiao, ZHOU Lan, SHAO Jianzhong. Structural Coloration of Photonic Crystals Based On Self-assembly of Colloid Microspheres[J]. 材料研究学报, 2021, 35(3): 175-183.
[10] YU Jianzhong, XV Xinling, YE Song. Research Progress on the Applications of Silver-loaded Zeolites[J]. 材料研究学报, 2021, 35(11): 801-810.
[11] LIU Zhufeng, HUANG Yaodong, YANG Xiao, HE Yuanjing, LI Zhaoqing, YAN Chunze. Preparation of Graphene/Ni-Cu Alloy Composite on Ni-Cu Alloy Template Made by Selective Laser Melting[J]. 材料研究学报, 2021, 35(1): 1-6.
[12] HOU Zhiquan,GUO Meng,LIU Yuxi,DENG Jiguang,DAI Hongxing. Synthesis of Intermetallic Compounds and Their Catalytic Applications[J]. 材料研究学报, 2020, 34(2): 81-91.
[13] WU Qiaofeng, ZHANG Fu, YU Yue, ZHANG Meng, YU Hua, FAN Shuanshi. Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells[J]. 材料研究学报, 2020, 34(11): 811-821.
[14] ZHOU Haitao, WANG Yanbo, XIAO Lu, SUN Jingli, XU Yuling, CHEN Ge. Research Status and Developing Trends of Preparation and Interface Control of Magnesium Matrix Composites with Carbon-containing Reinforcements[J]. 材料研究学报, 2020, 34(11): 801-810.
[15] LEI Xuanwei,ZHOU Shuanbao,HUANG Jihua. Current Status and Development Trend on Weldability of Ultra-high Strength Hull Structure Steel[J]. 材料研究学报, 2020, 34(1): 1-15.
No Suggested Reading articles found!