Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (12): 893-899    DOI: 10.11901/1005.3093.2021.601
ARTICLES Current Issue | Archive | Adv Search |
Effect of Solution Treatment Temperature on Microstructure and Tensile Properties of Ti-4Al-6Mo-2V-5Cr-2Zr Alloy
WANG Shengyuan1, ZHANG Haoyu1, ZHOU Ge1, CHEN Xiaobo2, CHEN Lijia1()
1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.School of Engineering, RMIT University, Carlton 3053, Australia
Cite this article: 

WANG Shengyuan, ZHANG Haoyu, ZHOU Ge, CHEN Xiaobo, CHEN Lijia. Effect of Solution Treatment Temperature on Microstructure and Tensile Properties of Ti-4Al-6Mo-2V-5Cr-2Zr Alloy. Chinese Journal of Materials Research, 2022, 36(12): 893-899.

Download:  HTML  PDF(14576KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel metastable β-Ti alloy (Ti-4Al-6Mo-2V-5Cr-2Zr) was designed, melt and wrought to prepare plates. Then the effect of solution treatment temperature on the microstructure and room temperature tensile properties of the as wrought alloy was investigated. Results show that a large number of α-phase precipitates from the β-matrix and gathers near slip bands when the solution temperature is lower than the phase transition temperature of the alloy. As the solution temperature approaches the phase transition temperature, the quantity of α-phase decreases and a part of the slip bands disappears. When the solution temperature is above the phase transition temperature, the alloy microstructure is composed fully of β-phase, while the slip bands disappear completely. As the solution temperature continues to rise, β-phase grains tend to aggregate and grow up. The alloy presents a good matching of strength and plasticity after solution treatment at 750℃×1 h. The corresponding ultimate tensile strength, yield strength and elongation are 957 MPa, 887 MPa and 11.7%, respectively.

Key words:  metallic materials      β titanium alloy      solution treatment      microstructure      α phase      tensile property     
Received:  26 October 2021     
ZTFLH:  TG146.2+3  
Fund: National Natural Science Foundation of China(52104379)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.601     OR     https://www.cjmr.org/EN/Y2022/V36/I12/893

AlMoVCrZrTi
3.745.601.854.822.09Bal.
Table 1  Chemical composition of Ti-4Al-6Mo-2V-5Cr-2Zr alloy (mass fraction, %)
Fig.1  Optical microstructure (a) and XRD pattern (b) for as-forged Ti-4Al-6Mo-2V-5Cr-2Zr alloy
Treated stateSolution temperature/℃Solution time/hCooling mode

S1

S2

S3

S4

750

770

810

830

1

1

1

1

Water cooling

Water cooling

Water cooling

Water cooling

Table 2  Solution treatment conditions for Ti-4Al-6Mo-2V-5Cr-2Zr alloy
Fig.2  Microstructures of Ti-4Al-6Mo-2V-5Cr-2Zr alloy after solution treatment below phase transition temperature for 1 h at 750℃, low magnification (a); at 750℃, high magnification (b); at 770℃, low magnification (c) and at 770℃, high magnification (d)
Fig.3  EBSD-IPF images and phase distribution images of Ti-4Al-6Mo-2V-5Cr-2Zr alloy after solution treatment above phase transition temperature for 1 h at 810℃, EBSD-IPF (a); at 810℃, phase distribution (b); at 830℃, EBSD-IPF (c) and at 830℃, phase distribution (d)
Fig.4  Microstructures of forged Ti-4Al-6Mo-2V-5Cr-2Zr alloy with different treated states (a) solution treatment for 1 h at 810℃; (b) solution treatment for 1 h at 830℃; (c) as-forged
Treated stateRm/MPaRP0.2/MPaA/%

S1

S2

S3

S4

957

915

925

896

887

875

885

866

11.7

6.5

8.5

9.3

As-forged8578242.1
Table 3  Tensile properties of Ti-4Al-6Mo-2V-5Cr-2Zr alloy with different treated states
Fig.5  Morphology of tensile fracture surfaces for Ti-4Al-6Mo-2V-5Cr-2Zr alloy after solution treatment at different temperatures (a) 750℃; (b) 770℃; (c) 810℃; (d) 830℃
1 Jin H X, Wei K X, Li J M, et al. Research development of titanium alloy in aerospace industry [J]. Chin. J. Nonferrous Met., 2015, 25(2): 280
金和喜, 魏克湘, 李建明 等. 航空用钛合金研究进展 [J]. 中国有色金属学报, 2015, 25(2): 280
2 Shang G Q, Zhu Z S, Chang H, et al. Development of ultra-high strength titanium alloy [J]. Rare Metals, 2011, 35(2): 286
商国强, 朱知寿, 常 辉 等. 超高强度钛合金研究进展 [J]. 稀有金属, 2011, 35(2): 286
3 Zhang J Y, Chen G F, Zhang S, et al. Progress of metastable β titanium alloy with transformation-induced plasticity and twinning-induced plasticity [J]. Rare Metal Mat. Eng., 2020, 49(1): 370
张金勇, 陈冠方, 张 帅 等. 亚稳β型TRIP/TWIP钛合金研究进展 [J]. 稀有金属材料与工程, 2020, 49(1): 370
4 Xiao W L, Fu Y, Wang J S, et al. Recent development in titanium alloys with high strength and high elasticity [J]. J. Aero. Mater., 2020, 40(3): 11
肖文龙, 付 雨, 王俊帅 等. 高强度高弹性钛合金的研究进展 [J]. 航空材料学报, 2020, 40(3): 11
5 Niu J Z, Sun Z G, Chang H, et al. Review on 3D printing of biomedical titanium alloy [J]. Rare Metal Mat. Eng., 2019, 48(5): 1697
牛京喆, 孙中刚, 常 辉 等. 3D打印医用钛合金研究进展 [J]. 稀有金属材料与工程, 2019, 48(5): 1697
6 Chen Y, Du Z, Xiao S, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy [J]. J. Alloys Compd., 2014, 586: 588
doi: 10.1016/j.jallcom.2013.10.096
7 Du Z, Xiao S, Xu L, et al. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy [J]. Mater. Des., 2014, 55(3): 183
doi: 10.1016/j.matdes.2013.09.070
8 Fan J, Li J, Kou H, et al. Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti-7333 [J]. Mater. Des., 2015, 83(15): 499
doi: 10.1016/j.matdes.2015.06.015
9 Fan X G, Zhang Y, Gao P F, et al. Deformation behavior and microstructure evolution during hot working of a coarse-grained Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy in beta phase field [J]. Mater. Sci. Eng. A, 2017, 694: 24
doi: 10.1016/j.msea.2017.03.095
10 Meng L, Kitashima T, Tsuchiyama T, et al. Effect of α precipitation on β texture evolution during β-processed forging in a near-β titanium alloy [J]. Mater. Sci. Eng. A, 2020, 771(C): 138640
doi: 10.1016/j.msea.2019.138640
11 Chen Q, Wang Q J, Wang D C, et al. Effect of solution temperature on microstructure and properties of new type metastable β titanium alloy [J]. T. Mater. Heat Treat., 2016, 37(8): 29
陈 强, 王庆娟, 王鼎春 等. 固溶温度对新型亚稳β钛合金组织与性能的影响 [J]. 材料热处理学报, 2016, 37(8): 29
12 Li X, Wang Y M, Lin J G, et al. Effects of solution temperature on microstructure and property of Ti55531 alloy [J]. T. Mater. Heat Treat., 2017, 38(2): 43
李 霞, 王玉明, 林建国 等. 固溶温度对Ti55531钛合金的组织与性能的影响 [J]. 材料热处理学报, 2017, 38(2): 43
13 Li Y, Qiang W, Ma C L, et al. Phase transformation in a β-Ti alloy with good balance between high strength and high fracture toughness [J]. Chinese J. Aeronaut., 2009, 22(5): 535
doi: 10.1016/S1000-9361(08)60137-5
14 Wang P Y, Zhang H Y, Zhang Z P, et al. Effect of solution temperature on microstructure and tensile properties of metastable beta titanium alloy Ti-4Mo-6Cr-3Al-2Sn [J]. Chin. J. Mater. Res., 2020, 34(6): 473
王鹏宇, 张浩宇, 张志鹏 等. 固溶温度对亚稳β钛合金Ti-4Mo-6Cr-3Al-2Sn的组织和拉伸性能的影响 [J]. 材料研究学报, 2020, 34(6): 473
15 Wang X M, Zhang S Q, Yuan Z Y, et al. Effect of heat treatment on mechanical properties of Ti-3Al-8V-6Cr-4Mo-4Zr alloy [J]. Chin. J. Mater. Res., 2017, 31(6): 409
doi: 10.11901/1005.3093.2016.267
王雪萌, 张思倩, 袁子尧 等. 时效处理对Ti-3Al-8V-6Cr-4Mo-4Zr合金力学性能的影响 [J]. 材料研究学报, 2017, 31(6): 409
doi: 10.11901/1005.3093.2016.267
16 Wang G Q, Zhao Z B, Yu B B, et al. Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246 [J]. Chin. J. Mater. Res., 2017, 31(5): 352
doi: 10.11901/1005.3093.2016.621
王国强, 赵子博, 于冰冰 等. 热处理工艺对Ti6246钛合金组织与力学性能的影响 [J]. 材料研究学报, 2017, 31(5): 352
doi: 10.11901/1005.3093.2016.621
17 Dong H B, Jiang Z Y, Zhou S W, et al. Effect of Pre-aging on Superplasticity of TB8 Ti-Alloy [J]. Chin. J. Mater. Res., 2018, 32(7): 541
doi: 10.11901/1005.3093.2017.542
董洪波, 姜智勇, 周盛武 等. 预时效对TB8钛合金超塑性的影响 [J]. 材料研究学报, 2018, 32(7): 541
doi: 10.11901/1005.3093.2017.542
18 Wang G R, Gao Q, Liu J X, et al. Composition design of beta-titanium alloys: theoretical, methodological and practical advances [J]. Materials Reports, 2017, 31(3): 44
王光荣, 高 颀, 刘继雄 等. β钛合金成分设计: 理论、方法、实践 [J]. 材料导报, 2017, 31(3): 44
19 Zhu W G, Lei J, Zhang Z X, et al. Microstructural dependence of strength and ductility in a novel high strength β titanium alloy with Bi-modal structure [J]. Mater. Sci. Eng. A, 2019, 762: 138086
doi: 10.1016/j.msea.2019.138086
20 Yumak N, Aslantas K. A review on heat treatment efficiency in metastable β titanium alloys: the role of treatment process and parameters [J]. J. Mater. Res. Technol., 2020, 9(6): 15360
doi: 10.1016/j.jmrt.2020.10.088
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!