Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (12): 887-892    DOI: 10.11901/1005.3093.2021.268
ARTICLES Current Issue | Archive | Adv Search |
Preparation of a Novel Spherical Nano-sized Iron Oxide
HAO Suju(), GAO Yice, JIANG Wufeng(), SUN Tianhao, ZHANG Yuzhu
School of Metallurgy and Energy, North China University of Science and Technology, Ministry of Education Key Laboratory of Modern Metallurgy Technology, Tangshan 063009, China
Cite this article: 

HAO Suju, GAO Yice, JIANG Wufeng, SUN Tianhao, ZHANG Yuzhu. Preparation of a Novel Spherical Nano-sized Iron Oxide. Chinese Journal of Materials Research, 2022, 36(12): 887-892.

Download:  HTML  PDF(10298KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel spherical nano-ferric oxide of 40~60 nm in diameter was prepared by pyrolysis precursor method, with Fe (NO3)3·9H2O as raw material and urea as precipitator. The prepared spherical nano-sized ferric oxide was characterized by XRD, SEM and EDS. The effect of Fe3+ concentration, reaction temperature and other factors on the particle size and morphology of nano-sized ferric oxide were investigated. The preparation conditions of nano-sized ferric oxide were determined and the formation mechanism of nano-sized ferric oxide was also analyzed. The results show that the crystallinity and particle size of nano-sized ferric oxide increase with the increase of temperature. The concentration of Fe (NO3)3·9H2O has little effect on the particle size and morphology of the prepared nano-sized iron oxide. The formation mechanism of spherical ferric oxide nanoparticles is as follows: the iron source hydrolysates and crystallizes under hydrothermal conditions to generate brownish yellow flocculant precipitation FeOOH, and FeOOH dissolves and recrystallizes in conditions of high temperature and high pressure further to generate spherical ferric oxide nanoparticles.

Key words:  metallic materials      spherical nano iron oxide      pyrolysis precursor method      Fe(NO3)3·9H2O     
Received:  29 April 2021     
ZTFLH:  TB31  
Fund: National Natural Science Foundation of China(51274084);Hebei Natural Science Foundation(E2018209323);Hebei Natural Science Foundation(E2022209125)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.268     OR     https://www.cjmr.org/EN/Y2022/V36/I12/887

Fig.1  XRD spectrum of the prepared nanometer iron oxide sample
Fig.2  SEM image of nanometer iron oxide sample
Fig.3  EDS analysis of nanometer iron oxide sample
Fig.4  XRD analysis of samples prepared at different reaction temperatures
Fig.5  SEM images of samples prepared at different reaction temperatures (a) 160℃, (b) 180℃, (c) 200℃, (d) 220℃
GrainFig.a/nmFig.b/nmFig.c/nmFig.d/nm
143516063
242535859
350555962
440546263
541515865
641526064
740545963
843525865
942516361
1041556364
Average42.3552.1060.0563.00
Table 1  Particle size statistics of experimental samples at different temperature
Fig.6  Size of sample prepared at different reaction temperature
Fig.7  SEM of samples with different reactants (a) 1.3 g, (b) 1.7 g, (c) 2.1 g, (d) 2.5 g
GrainFig.a/nmFig.b/nmFig.c/nmFig.d/nm
153565154
254535350
353555653
455555454
554535756
653565255
754545656
853555256
949525152
1053555555
Average53.254.1553.754
Table 2  Statistics of particle size of nanometer iron oxide prepared by experiment
1 Mahmoudi M, Sant S, Wang B, et al. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy-science direct [J]. Advanced Drug Delivery Reviews [J]. 2011, 63(1-2): 24
2 Iglesias G, Delgado A V, Kujda M, et al. Magnetic hyperthermia with magnetite nanoparticles: electrostatic and polymeric stabilization [J]. Colloid and Polymer Science, 2016, 294(10): 1541
doi: 10.1007/s00396-016-3918-3
3 Li Y, Wang Y L, Ren L. Recent advances in iron oxide nano-materials for tumor treatment [J]. Chin Sci Bull, 2021, 66: 1195
doi: 10.1360/TB-2020-1297
李 瑶, 王云龙, 任 磊. 氧化铁纳米材料在肿瘤治疗中的研究进展 [J]. 科学通报, 2021, 66(10): 1195
4 Espinosa A, Reguera J, Curcio A, et al. Janus magnetic-plasmonic nanoparticles for magnetically guided and thermally activated cancer therapy [J]. Small, 2020, 16(11): 1904960
doi: 10.1002/smll.201904960
5 Nemati Z, Das R, Alonso J, et al. Iron oxide nanospheres and nanocubes for magnetic hyperthermia therapy: A comparative study [J]. Journal of Electronic Materials, 2017
6 Wang J H. Shape-controlled synthesis and application of nano-iron oxides with multiple morphologies [D]. Dalian: Dalian Jiaotong University, 2017
王俊皓. 多种形貌纳米铁氧化物的控制合成及应用研究 [D]. 大连: 大连交通大学, 2017
7 Zhu M Y, Chen Q, Dong W J, et al. Preparation and application of Fe3O4 Nanomaterials [J]. Progress In Chemistry, 2017, 29(11): 1366
朱脉勇, 陈 齐, 童文杰 等. 四氧化三铁纳米材料的制备与应用 [J]. 化学进展, 2017, 29(11): 1366
doi: 10.7536/PC170559
8 Sun T H, Hao S J, Jiang W F, et al. Preparation and morphology analysis of nano-sized iron oxide [J]. Powder Metallurgy Technology, 2021, 39(01): 76
孙天昊, 郝素菊, 蒋武锋 等. 纳米氧化铁的制备及形貌分析 [J]. 粉末冶金技术, 2021, 39(01): 76
9 Du Q B, Yu G, Zhou B J, et al. Preparation and magnetic properties of superparamagnetic iron oxide nanorods [J]. Policy & Scientific Consult (Technology·management), 2021(02): 62
杜庆波, 于 冈, 周步军 等. 超顺磁性氧化铁纳米棒的制备及磁性研究 [J]. 科学咨询(科技·管理), 2021(02): 62
10 Li Y S, Church J S, Woodhead A L. Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications [J]. Journal of Magnetism & Magnetic Materials, 2012, 324(8): 1543
11 Li F, Liu L, An Y, et al. Hydrothermal liquefaction of three kinds of starches into reducing sugars [J]. J Cleaner Production, 2016, 112: 1049
doi: 10.1016/j.jclepro.2015.08.008
12 Qi L, Hao S, Li Y. Synthesis of various morphological Ca0.75Er0.25-MnO3 powders by hydrothermal method and their electrical properties [J]. Research on Chemical Intermediates, 2017, 43(11): 6589
doi: 10.1007/s11164-017-3006-4
13 Lu X G, Huang L C, Yang L Y, et al. Research progress of preparation methods of nano iron oxide [J]. Applied Chemical Industry, 2017, 46(04): 741
鲁秀国, 黄林长, 杨凌焱 等. 纳米氧化铁制备方法的研究进展 [J]. 应用化工, 2017, 46(04): 741
14 Zheng X F. Research progress in preparation of nano-oxides by hydrothermal method [J]. Inorganic Chemicals Industry, 2009, 41(8): 9
郑兴芳. 水热法制备纳米氧化物的研究进展 [J]. 无机盐工业, 2009, 41(8): 9
15 Yu G W, Zhang T L, Zhang J G, et al. Preparation and morphology of nano-sized ferric oxide (Fe3O4) [J]. Advances in Chemistry, 2007, 19(6): 884
16 Cheng S X, Li K Z, Qi L H, et al. Synthesis and size control of the Fe3O4 particles synthesized by a reverse coprecipitation method [J]. Chinese Journal of Materials Research, 2011, 25(05): 489
程三旭, 李克智, 齐乐华 等. 反向共沉淀法制备纳米Fe3O4及其粒径控制 [J]. 材料研究学报, 2011, 25(05): 489
17 Shao P H. Optimizing synthesis of iron oxide nano-materials for applicatiomferro in photo-fenton degradation of bispheonls under visible light irradiation [D]. Harbin: Harbin Institute of Technology, 2017
邵鹏辉. 纳米氧化铁的优化制备及其可见光芬顿降解水中的双酚S [D]. 哈尔滨: 哈尔滨工业大学, 2017
18 Li J, Li H L. Synthesis of α-Fe2O3 nanomaterials and its application in photocatalysis [J]. Journal of Jing De Zhen University, 2015, 30(06): 29
李 杰, 李焕莲. α-Fe2O3纳米材料的合成及其在光催化中的应用 [J]. 景德镇学院学报, 2015, 30(06): 29
19 Zhong X. Morphology controll synthesis and gas sensing properties of nano-iron oxide [D]. Jinan: University of Jinan, 2019
钟 鑫. 纳米氧化铁的形貌控制合成及气敏性能研究 [D]. 济南: 济南大学, 2019
20 Joseph K, Bailey C, Jeffrey B, et al. Growth mechanisms of iron oxide particles of differing morphologies from the forced hydrolysis of ferric chloride solutions [J]. J. Coll. Interface. Sci., 1993, 157: 1
doi: 10.1006/jcis.1993.1150
21 Pang Z. Solid Chemistry [M]. Beijing: Chemical Industry Press, 2008
庞 震. 固体化学 [M]. 北京: 化学工业出版社, 2008
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!