Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (8): 623-631    DOI: 10.11901/1005.3093.2020.286
ARTICLES Current Issue | Archive | Adv Search |
Manufacturing Process and Compression Performance of TC4 Pyramid Lattice Structure with Laser Welding
LIU Wei, WANG Hui, CHU Xingrong(), WANG Yangang, GAO Jun
School of Mechatronics and Information Engineering, Shandong University (Weihai), Weihai 264209, China
Cite this article: 

LIU Wei, WANG Hui, CHU Xingrong, WANG Yangang, GAO Jun. Manufacturing Process and Compression Performance of TC4 Pyramid Lattice Structure with Laser Welding. Chinese Journal of Materials Research, 2021, 35(8): 623-631.

Download:  HTML  PDF(24093KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Based on the TC4 Ti-alloy core formed by alternating pin-press method at high-temperature, the laser welding connection process of the panel and the core was investigated in order to manufacture the pyramid lattice structure of Ti-alloy. The laser welding parameters were optimized by response surface method, the plane and core of lattice structure were connected, the microstructures of welding joints were examined, and the compression performance of lattice structure was investigated. The results show that the laser power has the most significant influence on the welding result. The optimized parameters of laser welding of lattice structure face core were as follows: welding power of upper panel was 1.4 kW, welding power of lower panel was 1.2 kW, defocusing quantity was 30mm, and residence time was 1 s. The martensite transformation of Ti-alloy occurred, and a large number of acicular martensite phases distributed in the heat affected zone of laser welding. The microstructure of welding zone was coarse β phase and acicular α phase. The microhardness decreased from the weld zone to the base metal in the welding joints with the decreasing of martensite phase. Based on the compression process recorded by the camera the deformation and failure process of the pyramid lattice structure were analyzed. The failure fracture of truss rod occurred in the heat-affected zone. The compression pressure strength and modulus of the TC4 Ti-alloy lattice structure manufactured by laser welding were 3.09 MPa and 153.25 MPa, respectively.

Key words:  metallic materials      pyramid lattice structure      laser welding      microstructure      compression performance     
Received:  13 July 2020     
ZTFLH:  TG430.40  
Fund: Natural Science Foundation of Shandong Province(ZR2019MEE008);Major Innovation Project of Shandong Province(2019TSLH0103)
About author:  CHU Xingrong, Tel: (0631)5688338, E-mail: xrchu@sdu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.286     OR     https://www.cjmr.org/EN/Y2021/V35/I8/623

ElementAlVFeCOTi
Content6.04.10.190.020.16Bal.
Table 1  Composition of TC4 (mass fraction/%)
Fig.1  Pyramid lattice core manufactured by high-temperature alternating pin-press method (a) schematic, (b) pyramid lattice core
Fig.2  Welding equipment and fast fixture
Fig.3  Welding of the lattice structure (a) lower panel, (b) upper panel
LabelFactorsLevels
-101
ALaser power/kW11.52
BDefocus quantity/mm203040
CResidence time/s0.511.5
Table 2  Factors and levels of the optimization of laser welding parameter by response surface method
No.

Laser power

/kW

Defocus quantity

/mm

Residence time/s

Diameter of solder spot

/mm

1-1101.85
21014.06
30002.21
40002.53
510-11.93
6-1011.83
70-117.43
80002.67
9-10-11.19
100002.3
110-1-14.58
12-1-103.35
130113.23
1401-10.89
151-108.6
160002.3
171102.32
Table 3  Experimental design and results of the optimization of laser welding parameter by response surface method
Fig.4  Spot welding test pieces of response surface experiment
SourceSum of squaresDegree of freedomMean squareF valueP value
Model66.6197.4028.390.0001
A9.4419.4436.210.0005
B30.69130.69117.74<0.0001
C7.9217.9230.380.0009
AB5.7115.7121.910.0023
AC0.5610.562.130.189
BC0.06510.0650.250.6328
A20.02410.0240.0930.7689
B212.23112.2346.900.0002
C20.02310.0230.0870.7763
Residual1.8270.26--
Lack of fit1.6830.5615.340.0117
Pure error0.1540.036--
Cor total65.4416---
Table 4  Variance analysis of the solder joint diameter mathematical model
Fig.5  Response surface and contour map of welding spot diameter, laser power and defocus quantity
Fig.6  Laser welding TC4 1×1 unit lattice structure (a) pyramid lattice structure connected by laser weld-ing, (b) upper panel, (c) lower panel
Fig.7  Original metallography of TC4
Fig.8  Microstructure in different zone (a) base material zone, (b) heat affected zone, (c) welding zone, (d) plastic hinge zone
Fig.9  Distribution of microhardness at the joint of laser welded lattice structure
Fig.10  Failure process during compression of laser welding lattice structure
Fig.11  Compression load displacement curve of laser welding lattice structure
1 Gibson L J, Ashby M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1997
2 Feng R J, Yu J M. Honeycomb sandwich plate and its application in automotive industry [J]. Automobile Technology & Material, 2003, (8): 30
冯仁杰, 于九明. 蜂窝夹芯复合板及其在汽车工业中的应用 [J]. 汽车工艺与材料, 2003, (8): 30
3 Davies G O, Hitchings D, Besant T, et al. Compression after impact strength of composite sandwich panels [J]. Compos. Struct., 2004, 63(1): 1
4 Wadley H N G, Fleck N A, Evans A G. Fabrication and structural performance of periodic cellular metal sandwich structures [J]. Compos. Sci. Technol., 2003, 63(16): 2331
5 Froend M, Fomin F, Riekehr S, et al. Fiber laser welding of dissimilar titanium (Ti-6Al-4V/cp-Ti) T-joints and their laser forming process for aircraft application [J]. Opt. Laser Technol., 2017, 96: 123
6 Rack H J, Qazi J I. Titanium alloys for biomedical applications [J]. Mater. Sci. Eng. C, 2006, 26(8): 1269
7 Bartolomeu F, Buciumeanu M, Pinto E, et al. Wear behavior of Ti6Al4V biomedical alloys processed by selective laser melting, hot pressing and conventional casting [J]. T. Nonferr. Metal. Soc., 2017, 27(4): 829
8 Sypeck D J, Wadley H N G. Cellular truss core sandwich structures [J]. Appl. Compos. Mater., 2005, 12(3-4): 229
9 Bai L S. Study on preparation of Ti6Al4V three-dimensional lattice structure and its mechanical behavior [D]. Beijing: Beijing Jiaotong University, 2015
白利硕. 钛合金三维点阵结构制备和力学行为研究 [D]. 北京:北京交通大学, 2015
10 Zhao B, Li Z Q, Hou H L, et al. Research progress on fabrication methods of metal three dimensional lattice structure [J]. Rare Metal Mat. Eng., 2016, 45(8): 2189
赵冰, 李志强, 侯红亮等. 金属三维点阵结构制备技术研究进展 [J]. 稀有金属材料与工程, 2016, 45(8): 2189
11 Zeng S, Zhu R, Jiang W, et al. Research Progress of Metal Lattice Materials [J]. Material Reports, 2012, 26(5): 18
曾嵩, 朱荣, 姜炜等. 金属点阵材料的研究进展 [J]. 材料导报, 2012, 26(5): 18
12 Wu S Q, Lu Y J, Gan Y L, et al. Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments [J]. J. Alloy. Compd., 2016, 672: 643
13 Zhao Q, Liu Y, Wang L, et al. Effect of strain rate on tensile deformation behavior of laser welded joints of superalloy GH4169 [J]. Chin. J. Mater. Res., 2016, 30(12): 881
赵强, 刘杨, 王磊等. 应变速率对GH4169合金焊接接头拉伸变形行为的影响 [J]. 材料研究学报, 2016, 30(12): 881
14 Sahoo S K, Bishoyi B, Mohanty U K, et al. Effect of laser beam welding on microstructure and mechanical properties of commercially pure titanium[J]. Trans. Indian Inst. Met., 2017, 70(7): 1817
15 Chan C W, Smith G C. Fibre laser joining of highly dissimilar materials: commercially pure Ti and PET hybrid joint for medical device applications [J]. Mater. Des., 2016, 103: 278
16 Gong W H, Chen Y H, Ke L M. Microstructure and properties of laser micro welded joint of TiNi shape memory alloy [J]. Trans. Nonferr. Metal. Soc., 2011, 21(9): 2044
17 Quazi M M, Ishak M, Fazal M A, et al. Current research and development status of dissimilar materials laser welding of titanium and its alloys [J]. Opt. Laser Technol., 2020, 126: 106090
18 Xu Z Z, Dong Z Q, YU Z H, et al. Relationships between microhardness, microstructure, and grain orientation in laser-welded joints with different welding speeds for ti6al4v titanium alloy [J]. T. Nonferr. Metal. Soc., 2020, 30(5): 1277
19 Zhang Y Y, Zhu Z H, Liu J Z, et al. Research on laser welding of 1.2 mm thick TC4 titanium alloy [J]. Applied laser., 2019, 39(4): 596
张颖云, 朱增辉, 刘江哲等. 1.2 mm厚TC4钛合金薄板激光焊工艺研究 [J]. 应用激光, 2019, 39(4): 596
20 Gao X L, Zhang L J, Liu J, et al. Effects of weld cross-section profiles and microstructure on properties of pulsed Nd: YAG laser welding of Ti6Al4V sheet [J]. Int. J. Adv. Manuf. Technol., 2014, 72(5-8): 895
21 Kumar C, Das M, Paul C P, et al. Comparison of bead shape, microstructure and mechanical properties of fiber laser beam welding of 2 mm thick plates of Ti-6Al-4V alloy [J]. Opt. Laser Technol., 2018, 105: 306
22 Zhang X L, Li F G, Peng F H, et al. Hot workability of Ti6Al4V alloy based on processing map [J]. Journal of Aeronautical Materials, 2007, (5): 40
张晓露, 李付国, 彭富华等. 基于热加工图的TC4合金热成形性能研究 [J]. 航空材料学报, 2007, (5): 40
23 Zhang T Y. Study on fine-grain size titanium 6Al-4V alloy material for low temperature superplasticity [D]. Changsha: Central South University.2014
张拓阳. 细晶TC4合金的低温超塑性变形研究 [D]. 长沙:中南大学, 2014
24 Geng L B. Research on laser welding technology for car battery covers [D]. Harbin: Harbin Institute of Technology, 2017
耿立博. 汽车动力电池盖板激光焊接工艺研究 [D]. 哈尔滨:哈尔滨工业大学, 2017
25 Zhao X L, Wang B, Gong S L, et al. Study on microstructure and mechanical properties of laser welded joint of 2 mm thick TC4 titanium alloy [J]. Hot Working Technology, 2017, 46(9): 209
赵晓龙, 王彬, 巩水利等. 2.0 mm厚TC4钛合金激光焊接接头组织与力学性能研究 [J]. 热加工工艺, 2017, 46(9): 209
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!