Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (8): 615-622    DOI: 10.11901/1005.3093.2020.408
ARTICLES Current Issue | Archive | Adv Search |
Effect of P on Properties of Sn-9Zn-0.1S Lead-Free Solder
LI Lingmei1, HUANG Huizhen1(), ZHANG Qinghuan1, SHUAI Gewang2
1.School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China
2.School of Aeronautical Manufacturing Engineering, Nanchang HangKong University, Nanchang 330063, China
Cite this article: 

LI Lingmei, HUANG Huizhen, ZHANG Qinghuan, SHUAI Gewang. Effect of P on Properties of Sn-9Zn-0.1S Lead-Free Solder. Chinese Journal of Materials Research, 2021, 35(8): 615-622.

Download:  HTML  PDF(3149KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of P addition on the microstructure, oxidation resistance, wettability and corrosion resistance of Sn-9Zn-0.1S solder alloy were characterized via optical microscope observation, scanning electron microscopy (SEM) and X-ray diffractometer (XRD), as well as dross removal measurement at different temperatures, spreading area on Cu plate and weight loss measurement after immersion in HCl solution respectively. The results show that P addition can refine the lamellar eutectic microstructures, but coarsen the rod-like primary Zn-rich phases. The oxidation resistance and wettability of the solder can be firstly increased with the addition of P, then this effect reduces, and the optimal P content is 0.06% (mass fraction). At the same time, a suitable amount of P addition can also improve the corrosion resistance of Sn-9Zn-0.1S solder alloy by modifying its microstructure and increasing the density of corrosion products. It is found that the weight loss is the minimum when the P content is 0.1% (mass fraction).

Key words:  metallic materials      Sn-9Zn-0.1S lead-free solder      oxidation resistance      wettability      corrosion resistance     
Received:  27 September 2020     
ZTFLH:  TG425  
Fund: Natural Science Foundation of Jiangxi Province(20181BAB206010)
About author:  HUANG Huizhen, Tel: 13177820150, E-mail: hzhuang@ncu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.408     OR     https://www.cjmr.org/EN/Y2021/V35/I8/615

Fig.1  Microstructures of SnZn-0.1S-xP solder alloys, x=(a) 0, (b) 0.02, (c) 0.06, (d) 0.10 and (e) 0.15
Fig.2  XRD patterns of SnZn-0.1S-xP solder alloys, x=(a) 0, (b) 0.06 and (c) 0.15
Fig.3  Effects of P content on the amount of oxide dross formed on SnZn-0.1S solder at 280℃ and 320℃
Fig.4  XRD patterns of oxide drosses formed on SnZn-0.1S-xP solder alloys at 320℃, x=(a) 0, (b) 0.06 and (c) 0.15
Fig.5  SEM surface morphologies of (a) SnZn-0.1S and (b) SnZn-0.1S-0.15P solders after oxidation at 320℃, enlarged views of the local areas marked in (c) Fig.5a and (d, e) Fig.5b
AlloyPointSnZnO
SnZn-0.1Sα146.969.7543.29
SnZn-0.1Sα247.538.3244.15
SnZnS-0.15Pα347.5710.9741.46
SnZnS-0.15Pα445.1414.4240.44
SnZnS-0.15Pα519.4532.4648.05
SnZnS-0.15Pα613.7236.9149.37
Table 1  The atomic percentages of main elements tested by EDS at the marked points in Fig.5 (%, atomic fraction)
Fig.6  Effects of P content on spreading area of SnZn-0.1S solder on Cu substrate at different temperatures
Fig.7  Mass loss curves of SnZn-0.1S-xP solders in HCl solution
Fig.8  SEM surface morphologies of (a) SnZn-0.1S, (b) SnZn-0.1S-0.06P, (c) SnZn-0.1S-0.1P solders after immersion in HCl solution
Fig.9  XRD patterns of the corrosion products formed on (a) SnZn-0.1S, (b) SnZn-0.1S-0.06P and (c) SnZn-0.1S-0.1P solders after immersion in HCl solution with pH3.7
1 Liu S, Xue S B, Xue P, et al. Present status of Sn-Zn lead-free solders bearing alloying elements [J]. J. Mater. Sci.: Mater. Electron., 2015, 26: 4389
2 Zhang X P, Yin L M, Yu C B. Advances in research and application of lead-free solders for electronic and photonic packaging [J]. Chin. J. Mater. Res., 2008, 22: 1
张新平, 尹立孟, 于传宝. 电子和光子封装无铅钎料的研究和应用进展 [J]. 材料研究学报, 2008, 22: 1
3 Wei X Q, Zhou L, Huang H Z. Effects of oxidation on wettability of Sn-Zn alloys [J]. Chin. J. Nonferrous Met., 2009, 19: 174
魏秀琴, 周浪, 黄惠珍. 氧化对Sn-Zn系无铅焊料润湿性的影响 [J]. 中国有色金属学报, 2009, 19: 174
4 Zhang L, Yang F, Zhong S J. ZnO whiskers growth on the surface of Sn9Zn/Cu solder joints in concentrator silicon solar cells solder layer [J]. High Technol. Lett., 2017, 23: 337
5 Mohamed M N, Aziz N A, Mohamad A A, et al. Polarization study of Sn-9Zn and Sn-37Pb solders in hydrochloric acid solution [J]. Int. J. Electroactive Mater., 2015, 3: 28
6 Fazal M A, Liyana N K, Rubaiee S, et al. A critical review on performance, microstructure and corrosion resistance of Pb-free solders [J]. Measurement, 2019, 134: 897
7 Chen W X. Effects of Ag, Ga, Al and Ce on the properties of Sn-9Zn lead-free solder [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013
陈文学. Ag、Ga、Al及Ce对Sn-9Zn无铅钎料性能的影响 [D]. 南京: 南京航空航天大学, 2013
8 Al-Ezzi A, Al-Bawee A, Dawood F, et al. Effect of bismuth addition on physical properties of Sn-Zn lead-free solder alloy [J]. J. Electron. Mater., 2019, 48: 8089
9 Zhang L, Yang F, Guo Y H, et al. Effect of rare earth Yb on the properties of Sn-Zn lead-free solders [J]. Chin. Rare Earths, 2017, 38(5): 33
张亮, 杨帆, 郭永环等. 含Yb的Sn-Zn无铅钎料性能研究 [J]. 稀土, 2017, 38(5): 33
10 Jing Y X. Investigation of Sn-Zn solder alloys and the bonding mechanism of solder/Cu substrate [D]. Chongqing: Chongqing University, 2013
景彦霞. Sn-Zn合金钎料及其与Cu基板界面结合机理研究 [D]. 重庆: 重庆大学, 2013
11 Xie J Y, Wang Z H, Chen Y M, et al. Effect of trace Ti on corrosion resistance of lead-free Sn-9Zn-xTi solder [J]. Electron. Comp. Mater., 2017, 36(8): 103
谢景洋, 王正宏, 陈一鸣等. 微量Ti对Sn-9Zn-xTi无铅焊料耐蚀性的影响 [J]. 电子元件与材料, 2017, 36(8): 103
12 Pietrzak K, Grobelny M, Makowska K, et al. Structural aspects of the behavior of lead-free solder in the corrosive solution [J]. J. Mater. Eng. Perform., 2012, 21: 648
13 Han R N. Development of special flux matching Sn-Zn lead-free solder for electronic packaging [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013
韩若男. 电子封装用Sn-Zn无铅钎料专用助焊剂研究 [D]. 南京: 南京航空航天大学, 2013
14 Cheng L. Modification resistance of sulfur adding on tin-based lead-free solder [D]. Nanchang: Nanchang University, 2015
程龙. 硫合金化对锡基无铅焊料的改性作用研究 [D]. 南昌: 南昌大学, 2015
15 Wei X Q, Li Y H, Huang H Z. Effects of sulfur on the properties of Sn-9Zn as lead-free solder [J]. J. Electron. Mater., 2017, 46: 1067
16 Huang H Z, Lu D, Shuai G W, et al. Effects of phosphorus addition on the corrosion resistance of Sn-0.7Cu lead-free solder alloy [J]. Trans. Indian Inst. Met., 2016, 69: 1537
17 Yan J K, Chen D D, Gan Y W, et al. Effect of P on properties of Sn-0.7Cu lead-free solder alloy [J]. Mater. Sci. Technol., 2019, 27(5): 39
严继康, 陈东东, 甘有为等. P元素对Sn-0.7Cu焊料合金性能的影响 [J]. 材料科学与工艺, 2019, 27(5): 39
18 Li H, Lu B, Zhu H W. Effect of P on oxidation resistance of low-silver lead-free solder [J]. Hot Work. Technol., 2012, 41(7): 143
粟慧, 卢斌, 朱华伟. 微量磷元素对低银系无铅钎料抗氧化性能的影响 [J]. 金属铸锻焊技术, 2012, 41(7): 143
19 Massalski T B. Binary Alloy Phase Diagrams [M]. Ohio: ASM International, 1990
20 Wang Q M. Influence of trace elements on the wettability and oxidation of liquid Sn-0.7Cu lead-free solder [D]. Chongqing: Chong-qing University, 2015
王青萌. 微量元素对Sn-0.7Cu无铅钎料润湿性和高温抗氧化性的影响 [D]. 重庆: 重庆理工大学, 2015
21 Key Chung C, Chen Y J, Li C C, et al. The critical oxide thickness for Pb-free reflow soldering on Cu substrate [J]. Thin Solid Films, 2012, 520: 5346
22 Pstruś J, Gancarz T, Fima P. Effect of indium additions on the formation of interfacial intermetallic phases and the wettability at Sn-Zn-In/Cu interfaces [J]. Adv. Mater. Sci. Eng., 2017, 2017: 9756769
23 Wang Z H, Chen C T, Jiu J T, et al. Electrochemical behavior of Sn-9Zn-xTi lead-free solders in neutral 0.5M NaCl solution [J]. J. Mater. Eng. Perform., 2018, 27: 2182
24 Mostofizadeh M, Frisk L. Corrosion behavior of Sn-Zn-Bi and Sn-Pb-Ag solders in a salt spray test [A]. Proceedings of the 5th Electronics System-Integration Technology Conference [C]. Helsinki, Finland: IEEE, 2014: 1
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!