Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (8): 583-590    DOI: 10.11901/1005.3093.2020.569
ARTICLES Current Issue | Archive | Adv Search |
Dynamic Recrystallization of Ti-6Al-4V Alloy During Hot Compression
LIU Chao1, WANG Xin1, MEN Yue1, ZHANG Haoyu1, ZHANG Siqian1, ZHOU Ge1(), CHEN Lijia1, LIU Haijian2
1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China
Cite this article: 

LIU Chao, WANG Xin, MEN Yue, ZHANG Haoyu, ZHANG Siqian, ZHOU Ge, CHEN Lijia, LIU Haijian. Dynamic Recrystallization of Ti-6Al-4V Alloy During Hot Compression. Chinese Journal of Materials Research, 2021, 35(8): 583-590.

Download:  HTML  PDF(12830KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The stress-strain curves of Ti-6Al-4V alloy during hot deformation by applied strain rate within the range of 5×10-4~5×10-2 s-1 at 870~960°C were measured via single-pass isothermal compression test. The dynamics characteristics of rheological stress, critical strain capacity and structure evolution of the alloy during dynamic recrystallization were systematically illustrated by means of KM model, Poliak-Jonas model, and Avrami model. Then a concept of volume fraction of the microstructure transformation, i.e., the portion of the alloy that has been underwent microstructure transformation during dynamic recrystallization, was introduced into the so called prasad power dissipation rate model, thus the energy variation of the alloy during dynamic recrystallization was acquired. Further, taking both of the acquired energy variation and the observed microstructure evolution characteristics together into consideration, the dynamic recrystallization mechanism of Ti-6Al-4V alloy may be revealed. It follows that the critical strain capacity of Ti-6Al-4V during dynamic recrystallization decreased and the structural transformation volume fraction increased following the rise of deformation temperature or the decline of strain rate. The power dissipation rate upon complete dynamic recrystallization is larger than 0.34, and the forming mechanism is a dislocation-induced arcuation nucleation mechanism.

Key words:  metallic materials      Ti-6Al-4V      dynamic recrystallization      physical models      hot compression deformation      microstructure     
Received:  28 December 2020     
ZTFLH:  TG146.23  
Fund: National Natural Science Foundation of China(51805335)
About author:  ZHOU Ge, Tel: 18602408585, E-mail: zhouge@sut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.569     OR     https://www.cjmr.org/EN/Y2021/V35/I8/583

Fig.1  True stress-true strain curves of Ti-6Al-4V alloy (a) 870℃; (b) 900℃; (c) 930℃; (d) 960℃
ParametersValueParametersValue
b0-12.9616b50.48118
b1-0.5318b60.03365
b2-0.05727b723.7294
b30.0309b81.02584
b40.81679
Table 1  Parameters in constitutive equation of Ti-6Al-4V alloy
Fig.2  ??(lnθ)/??ε-ε curves of Ti-6Al-4V alloy at different strain rates
Strain rate/s-1εc
870℃900℃930℃960℃
5×10-40.30890.29360.27240.2536
1×10-30.31770.29910.28720.2701
5×10-30.33020.31560.30070.2841
5×10-20.34980.33010.31910.2951
Table 2  Critical strain during high deformation of Ti-6Al-4V alloy
Fig.3  Relation of critical strain of Ti-6Al-4V alloy for dynamic recrystallization
Fig.4  Evolution of dynamic recrystallization volume fraction Xd in Ti-6Al-4V alloy under different conditions (a) strain rate 0.005 s-1, (b) temperature 930℃
Fig.5  Dynamic recrystallization power dissipation of Ti-6Al-4V alloy at different temperatures and strain rates (a) ε=0.3, (b) ε=0.4
Fig.6  Microstructures of Ti-6Al-4V alloy (a) initial; (b) T=930℃, ?=0.0005 s-1, ε=0.3; (c) T=930℃, ?=0.0005 s-1, ε=0.4; (d) T=870℃, ?=0.0005 s-1, ε=0.3; (e) T=870℃, ?=0.05 s-1, ε=0.3; (f) T=960℃, ?=0.005 s-1, ε=0.6
Fig.7  Microstructures of Ti-6Al-4V alloy (T=930℃, ?=0.0005 s-1, ε=0.3)
1 Salishchev G A, Aliyev R M, Valiakhmetov O R. Development of Ti-6Al-4V sheet with low temperature superplastic properties [J]. J. Mater. Process. Tech., 2001, 116(23): 265
2 Lee J H, Song Y J, Shin D H. Microstructural evolution during superplastic bulge forming of Ti-6Al-4V alloy [J]. Mater. Sci. Eng. A., 1998, 243(2): 119
3 Huang Z H, Qu HL, Deng C, et al. Development and application of aerial titanium and its alloys [J]. Mater. Rev., 2011, 25(1): 102
黄张洪, 曲恒磊, 邓超等. 航空用钛及钛合金的发展及应用 [J]. 材料导报, 2011, 25(1): 102
4 Jin H X, Wei K X, Li J M, et al. Research development of titanium alloy in aerospace industry [J]. Chin. J. Nonferrous. Met., 2015, 25(2): 280
金和喜, 魏克湘, 李建明等. 航空用钛合金研究进展 [J]. 中国有色金属学报, 2015, 25(2): 280
5 Yang B W, Xue Y, Zhang Y M, et al. Study on high temperature deformation behavior of HIP TC4 titanium alloy [J]. Hot. Working. Tech., 2018, 47(23): 46
杨博文, 薛勇, 张治民等. 热等静压态TC4钛合金高温变形行为研究 [J]. 热加工工艺, 2018, 47(23): 46
6 Zhang Z M, Ren L Y, Xue Y, et al. Microstructure of hot isostatically pressed Ti-6A1-4V alloy after hot deformation [J]. Rare. Metal. Mat. Eng., 2019, 48(3): 820
张治民, 任璐英, 薛勇等. 热等静压Ti-6Al-4V钛合金热变形微观组织演变 [J]. 稀有金属材料与工程, 2019, 48(3): 820
7 Hamed S, Langdon T G. Using heat treatments,high-pressure torsion and post-deformation annealing to optimize the properties of Ti-6Al-4V alloys [J]. Acta. Mater, 2017, 141: 419
8 Megumi K, Langdon T G. The contribution of severe plastic deformation to research on superplasticity [J]. Mater. Trans., 2019, 60(7): 1123
9 Kawasaki M, Figueiredo R B, Langdon T G. Recent developments in the processing of advanced materials using severe plastic deformation [J]. Mater. Sci. Forum., 2020, 72: 3304
10 Kawasaki M, Langdon T G. Superplasticity in ultrafine-grained materials [J]. Rev. Adv. Mater. Sci., 2018, 54(1): 46
11 Zhang S, Wang Y C, Zhilyaev A P, et al. Temperature and strain rate dependence of microstructural evolution and dynamic mechanical behavior in nanocrystalline Ti [J]. Mater. Sci. Eng. A., 2015, 641: 29
12 Zhang J Y. Study on fine crystal heat treatment diagram and dynamic recrystallization behavior of TC4 titanium alloy [D]. Xi'an: Xi'an University of Architecture and Technology, 2019
张君彦. 细晶TC4钛合金的热加工图及动态再结晶行为研究 [D]. 西安: 西安建筑科技大学, 2019
13 Yang L Q, Yang Y Q. Deformed microstructure and texture of Ti6Al4V alloy [J]. T. Nonfree. Metal. Soc., 2014, 24(10): 3103
杨柳青, 杨延清. Ti6Al4V钛合金的变形组织及织构 [J]. 中国有色金属学报(英文版), 2014, 24(10): 3103
14 Zhong X T, Huang L K, Wang L, et al. A discontinuous dynamic recrystallization model incorporating characteristics of initial microstructure [J]. T. Nonfree. Metal. Soc., 2018, 28(11): 2294
15 Hanlon D N, Sietsma J, Zwaag S V D. The effect of plastic deformation of austenite on the kinetics of subsequent ferrite formation [J]. Trans. Iron. Steel IOJ., 2001, 41(9): 1028
16 Estrin Y, Mecking H. A unified phenomenological description of work hardening and creep based on one-parameter models [J]. Acta. Metall., 1984, 32(1): 57
17 Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Mater., 1996, 44(1): 127
18 Mcqueen H J, Blum W. Dynamic recovery: sufficient mechanism in the hot deformation of Al (<99.99) [J]. Mater. Sci. Eng. A., 2000, 290(1-2): 95
19 Prasad Y V R K, Seshacharyulu T. Processing maps for hot working of titanium alloys [J]. Mater. Sci. Eng. A., 1998, 243(1~2): 82
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!