Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (7): 553-560    DOI: 10.11901/1005.3093.2020.515
ARTICLES Current Issue | Archive | Adv Search |
Microstructure Evolution During Tensile Deformation of an Extruded Mg-0.4Zn Alloy Plate
GU Jiaqing1(), TANG Weineng2(), XU Shiwei1
1.Shanghai Baosteel Research Institute Center, Shanghai 200431, China
2.Technology Center, Baosteel Metal Co. , Ltd, Shanghai 200940, China
Cite this article: 

GU Jiaqing, TANG Weineng, XU Shiwei. Microstructure Evolution During Tensile Deformation of an Extruded Mg-0.4Zn Alloy Plate. Chinese Journal of Materials Research, 2021, 35(7): 553-560.

Download:  HTML  PDF(6991KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The evolution of grain boundaries, texture types and cracks of an extruded plate of Mg-0.4%Zn alloy during deformation by different tensile strains was investigated by means of in-situ tensile test coupled with electron backscattering diffraction (EBSD) technique in Zeiss Sigma 300 field emission scanning electron microscope. The results show that by the tensile strain from 0% to 20%, the twin boundaries of material increase gradually with the strains, the twin boundaries mainly belong to the type of {10-12} extension twin. Therewith, the twinning may bring about the variation of the texture of the alloy. During the tensile process, cracks in the Mg-Zn alloy may preferentially generate at the tips of the twins and/or initial grain boundaries, simultaneously trans-granular cracks appear in some grains with the increase of strain, finally fracture happened after the propagation of cracks.

Key words:  metallic materials      magnesium alloy      in-situ tension      twin      texture      crack     
Received:  03 December 2020     
ZTFLH:  TG146.22  
Fund: the National Key Research and Development Program of China(2016YFB 0301102)
About author:  TANG Weineng, Tel: (021)26099720, E-mail: tangweineng@baosteel.com
GU Jiaqing, Tel: (021)26641801, E-mail: gujiaqing@baosteel.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.515     OR     https://www.cjmr.org/EN/Y2021/V35/I7/553

SpecimenZnSiCuFeNiMg
Mg-0.4%Zn0.390.0040.0010.0020.0005Bal.
Table 1  Chemical composition of the samples (mass fraction, %)
Fig.1  Geometry of the in-situ tension sample (unit: mm) (a) and Gatan in-situ tensile test device (b)
Fig.2  Engineering stress-strain curve for the in-situ tensile sample
Fig.3  Inverse pole figure (IPF) of the extruded magnesium alloy in various strain states (∥ND plane) (a) 0%, (b) 5%, (c) 10%, (d) 15%, (e) 20%
Fig.4  Secondary electron morphology of the extruded magnesium alloy in various strain states (200×) (a) 0%, (b) 5%, (c) 10%, (d) 15%, (e) 20%
Fig.5  Pole figures (PF) of the extruded magnesium alloy in various strain states (a) 0%, (b) 5%, (c) 10%, (d) 15%, (e) 20%
Fig.6  In-situ analysis of misorientation angle chart of extruded magnesium alloy in various strain states: (a) 0%, (b) 5%, (c) 10%, (d) 15%, (e) 20%
Fig.7  Misorientation angle chart of 20% strain state of the extruded magnesium alloy as well as its legend
Fig.8  Interaction analysis of 20% strain state of the extruded magnesium alloy (a) misorientation angle chart; (b) misorientation angle + IPF; (c) PF + grain orientation image
1 Liu Q. Research progress on plastic deformation mechanism of Mg alloys [J]. Acta. Metall. Sin., 2010, 46: 1458
刘庆.镁合金塑性变形机理研究进展 [J]. 金属学报, 2010, 46: 1458
2 Chen Z H, Yang C H, Huang C Q, et al. Investigation of the twinning in plastic deformation of magnesium alloy [J]. Mater. Rev.. 2006, 20(8): 107
陈振华, 杨春花, 黄长清等. 镁合金塑性变形中孪生的研究 [J]. 材料导报, 2006, 20(8) : 107
3 Peng Q M, Sun Y, Wang J, et al. Structural characteristics of {10-11} contraction twin-twin interaction in magnesium [J]. Acta Mater., 2020, 192: 60
4 Jeong J, Alfreider M, Konetschnik R, et al. In-situ TEM observation of {10-12} twin-dominated deformation of Mg pillars: twinning mechanism, size effects and rate dependency [J]. Acta Mater., 2018, 158: 407
5 Liu H Q, Tang D, Cai Q W, et al. Deforming texture and deformation mechanism of coordination of AZ31 magnesium alloy sheets [J]. Chinese J. Mater. Res., 2012, 26(3): 231
刘华强, 唐荻, 蔡庆伍等. AZ31镁合金的变形织构和协调变形机理 [J]. 材料研究学报, 2012, 26(3): 231
6 Zhan M Y, Li C M, Shang J L. Investigation of the plastic deformation mechanism and twinning of magnesium alloys [J]. Mater. Rev., 2011, 25(2)A: 1
詹美燕, 李春明, 尚俊玲. 镁合金的塑性变形机制和孪生变形研究 [J]. 材料导报, 2011, 25(2)A: 1
7 Li L, Wu Y Z, Wu J. In-situ analysis of grain rotation and lattice strain within a magnesium polycrystal based on synchrotron polychromatic X-ray diffraction technique: (I) prior to twin [J]. Micron, 2018, 111: 1
8 Li L, Wu Y Z, Wu J, et al. In-situ analysis of deformation twins within a magnesium polycrystal: (II) twin growth [J]. Micron, 2019, 119: 8
9 Ando D,Koike J, Sutou Y. The role of deformation twinning in the fracture behavior and mechanism of basal textured magnesium alloys [J]. Mater. Sci. Eng., 2014, 600 A:145
10 Ventura N M D, Kalácska S, Casari D, et al. {10-12} twinning mechanism during in situ micro-tensile loading of pure Mg: role of basal slip and twin-twin interactions [J]. Mater. Design, 2021, 197: 109206.
11 Wu Z, Ahmad R, Yin B, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys [J]. Science, 2018, 359: 447
12 Tang W, Han E H, Xu Y B, et al. Effect of Al, Ca alloying element on mechanical behavior of wrought magnesium alloys [J]. Chinese J. Mater. Res., 2005, 19(5): 471
唐伟, 韩恩厚, 徐永波等. Al和Ca对变形镁合金性能的影响 [J]. 材料研究学报, 2005, 19(5): 471
13 Jiang M G, Xu C, Yan H, et al. Correlation between dynamic recrystallization and formation of rare earth texture in a Mg-Zn-Gd magnesium alloy during extrusion [J]. Sci. Rep., 2018, 8(1): 16800
14 Wang F, Sandlöbes S, Diehl M, et al. In situ observation of collective grain-scale mechanics in Mg and Mg-rare earth alloys [J], Acta Mater., 2014, 80: 77
15 Basu I, Al-Samman T. Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium [J]. Acta Mater., 2014, 67: 116
16 Obara T, Yoshinga H, Morozumi S. {11-22}<1123> slip system in magnesium [J]. Acta Metall., 1973, 21: 845
17 Ding S X, Lee W T, Chang C P. Improvement of strength of magnesium alloy processed by equal channel angular extrusion [J]. Scr. Mater., 2008, 59: 1006
18 Jain A, Duygulu O, Brown D W, et al. Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy AZ31B sheet [J]. Mater. Sci. Eng., 2008, 486A: 545
19 Reed-Hill R E, Robertson W D. Additional modes of deformation twinning in magnesium [J]. Acta Metall., 1957, 5: 717
20 Pérez-Prado M T, Molina-Aldareguia J M, Cepeda-Jiménez C M. EBSD-assisted slip trace analysis during in situ SEM mechanical testing: application to unravel grain size effects on plasticity of pure Mg polycrystals [J]. JOM, 2016, 68: 116
21 Yu H, Li C, Xin Y, et al. The mechanism for the high dependence of the Hall-Petch slope for twinning/slip on texture in Mg alloys [J]. Acta Mater., 2017, 128: 313
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!