Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (7): 543-552    DOI: 10.11901/1005.3093.2020.227
ARTICLES Current Issue | Archive | Adv Search |
Effect of Post Aging on Mechanical Properties of Friction Stir Welded 7046 Aluminum Alloy
LIAO Zexin1,2, LI Chengbo1,2,3, LIU Shengdan1,2,4(), TANG Jianguo1,2,4, HUANG Chuanyan3, ZHU Xianyan3
1.School of Materials Science and Engineering, Central South University, Changsha 410083, China
2.Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
3.Guangdong Hoshion Industrial Aluminum Co. Ltd. , Zhongshan 528463, China
4.Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083, China
Cite this article: 

LIAO Zexin, LI Chengbo, LIU Shengdan, TANG Jianguo, HUANG Chuanyan, ZHU Xianyan. Effect of Post Aging on Mechanical Properties of Friction Stir Welded 7046 Aluminum Alloy. Chinese Journal of Materials Research, 2021, 35(7): 543-552.

Download:  HTML  PDF(31053KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Extruded sheets of 7046 aluminum alloy of 3.5 mm in thickness were subjected to friction stir welding (FSW) and then post aging treatment. The hardness profile of the FSW joint exhibits a "W" shape and the ultimate tensile strength is 406.5 MPa with a welding coefficient of 0.8. During tensile test fracture appears at the minimum hardness zone, which is the transition area between the heat affected zone (HAZ) and the thermal-mechanically affected zone (TMAZ) on the retreating side. There are a lot of dimples on the fracture surface. After aging at 120℃ for 24 h there is little change in the hardness of the base metal (BM) but the hardness of the HAZ, TMAZ and nugget zone (NZ) increase apparently, which is more or less the same as that of the BM. The ultimate tensile strength increases significantly up to about 490MPa with the welding coefficient increasing to about 0.96. Fracture appears at the NZ and there are a lot of intergranular cracks on the fracture surface. After aging, the GPI zones within grains of the FSW joint transform into η' metastable phase with better strengthening effect, leading to higher hardness and strength. η phase tends to be more continuous at grain boundaries and there is a higher volume fraction of precipitates free zones near grain boundaries in the NZ than other regions, therefore, fracture tends to occur in the NZ during tensile test.

Key words:  metallic materials      7046 aluminum alloy      friction stir welding      post weld aging      microstructure      mechanical properties     
Received:  13 June 2020     
ZTFLH:  TG457.14  
Fund: National Key Research and Development Program of China(2016YFB0300901);Key Project of Science and Technology of Zhongshan Bureau of Guangdong Province(2016A1001)
About author:  LIU Shengdan, Tel: (0731)88830265, E-mail: lsd_csu@csu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.227     OR     https://www.cjmr.org/EN/Y2021/V35/I7/543

ZnMgCuZrTiFeSiAl
6.441.410.270.150.020.110.07Bal.
Table 1  Chemical compositions of 7046 aluminum alloy (mass fraction, %)

Rotation speed

/r·min-1

Welding speed

/mm·min-1

Pin

diameter/mm

Pin

depth/mm

Shoulder diameter/mm

Plunge depth

/mm

Tilt angle

160040032.8120.22.5
Table 2  Friction stir welding parameters
Fig.1  Schematic of hardness tests and tensile samples cut from the FSW joint (ED: extrusion direction, TD: transverse direction, ND: normal direction)
Fig.2  Macroscopic morphology of transverse cross section of FSW joint
Fig.3  Optical images of BM、HAZ、TMAZ zone of FSW joint (a) position a in Fig.2, (b) position b in Fig.2, (c) position c in Fig.2, (d) position d in Fig.2
Fig.4  Optical images of NZ zone and SAZ zone of FSW joint (a) position e in Fig.2, (b) position f in Fig.2, (c) position g in Fig.2
Fig.5  TEM images and SADP of BM zone、HAZ zone and NZ zone of FSW joint (a, b) BM zone, (c, d) HAZ zone, (e, f) NZ zone, (g) Near <110>Al SADP of BM zone, (h) As a representative, <100>Al SADP of HAZ zone is given
SamplesFSW jointFSW joint after ageing
BMHAZNZBMHAZNZ
Size of η phase55.2±9.281.4±13.232.1±7.058.4±6.179.9±11.736.7±8.3
Interparticle spacing79.3±11.2236.3±22.4-84.5±7.8223.9±30.6-
PFZ width42.3±2.7--43.7±4.337.4±4.136.5±3.1
Table 3  Size, spacing of precipitates and PFZ width at the grain boundary of different samples
Fig.6  TEM images and SADP of BM zone、HAZ zone and NZ zone of AG-FSW joint (a, b) BM zone; (c, d) HAZ; zone; (e, f) NZ zone; (g) As a representative, near <110>Al SADP of NZ zone is given
Fig.7  Hardness profiles of FSW and AG-FSW joint
SamplesRp0.2/MPaRm/MPaA/%

Rp0.2

efficiency

Rm

efficiency

A

efficiency

Fracture

location

BM476.0±3.5507.7±4.29.0±1.1----
FSW joint289.5±6.2406.5±5.86.2±0.60.610.800.69HAZ/TMAZ
AG-FSW joint457.2±8.4490.0±5.12.5±0.80.960.960.28NZ
Table 4  Tensile properties of BM and FSW joint at room temperature
Fig.8  Optical images of fracture surface of FSW joint after tensile test (a) FSW joint, (b) AG-FSW joint
Fig.9  SEM images of fracture surface of FSW joint after tensile test (a) FSW joint, (b) AG-FSW joint
1 Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Mater. Des. (1980-2015), 2014, 56: 862
2 Song Y B, Li L, Lv J M, et al. Research status and perspective of 7xxx series aluminum alloys welding [J]. Chin. J. Nonferrous. Met., 2018, 28: 492
宋友宝, 李龙, 吕金明等. 7xxx系铝合金焊接研究现状与展望 [J]. 中国有色金属学报, 2018, 28: 492
3 Zeng M X, Lin Z M, Li W T, et al. Property of Al-Zn-Mg-(Cu) alloy after linear heating aging treatment [J]. Chin. J. Mater. Res., 2015, 29: 235
曾苗霞, 林阵铭, 李文涛等. Al-Zn-Mg-(Cu)合金线性升温时效后的性能 [J]. 材料研究学报, 2015, 29: 235
4 Lin H Q, Wu Y L, Liu S D. Impact of initial temper of base metal on microstructure and mechanical properties of friction stir welded AA 7055 alloy [J]. Mater. Charact., 2018, 146: 159
5 Zhang Z, Zhang H W. Effect of process parameters on quality of friction stir welds [J]. Chin. J. Mater. Res., 2006, 20: 504
张昭, 张洪武. 焊接参数对搅拌摩擦焊接质量的影响 [J]. 材料研究学报, 2006, 20: 504
6 Hao H L, Ni D R, Huang H, et al. Effect of welding parameters on microstructure and mechanical properties of friction stir welded Al-Mg-Er alloy [J]. Mater. Sci. Eng. A, 2013, 559: 889
7 Lin H Q, Wu Y L, Liu S D, et al. Effect of cooling conditions on microstructure and mechanical properties of friction stir welded 7055 aluminium alloy joints [J]. Mater. Charact., 2018, 141: 74
8 Wang X J, Sun G P, Zhang J, et al. Effects of heat treatment after welding on friction stir welding joints of high-strength aluminum alloy [J]. Chin. J. Nonferrous. Met., 2009, 19: 484
王希靖, 孙桂苹, 张杰等. 焊后热处理对高强铝合金搅拌摩擦焊接头的影响 [J]. 中国有色金属学报, 2009, 19: 484
9 Hao Y X, Wang W, Xu R Q, et al. Effect of post weld heat treatment on microstructure and mechanical properties of submerged friction stir welded 7A04 aluminum alloy [J]. J. Mater. Eng., 2016, 44(6): 70
郝亚鑫, 王 文, 徐瑞琦等. 焊后热处理对7A04铝合金水下搅拌摩擦焊接接头组织性能的影响 [J]. 材料工程, 2016, 44(6): 70
10 Kumar P V, Reddy G M, Rao K S. Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir welds-Effect of post weld heat treatment [J]. Def. Technol., 2015, 11: 362
11 Sharma C, Dwivedi D K, Kumar P. Effect of post weld heat treatments on microstructure and mechanical properties of friction stir welded joints of Al-Zn-Mg alloy AA7039 [J]. Mater. Des., 2013, 43: 134
12 Wang Z T, Zhang X H. Aluminum alloy for automobile usage [J]. Light Alloy Fabrication Technol., 2011, 39(2): 1
王祝堂, 张新华. 汽车用铝合金 [J]. 轻合金加工技术, 2011, 39(2): 1
13 Wu Y L, Zheng Y, Liu S D, et al. Microstructure and mechanical properties of 7055 Al alloy sheet friction stir welded joint [J]. J. Cent. South Univ. (Sci. Technol.), 2015, 46: 2426
吴豫陇, 郑英, 刘胜胆等. 7055铝合金板材搅拌摩擦焊接头的组织与力学性能 [J]. 中南大学学报(自然科学版), 2015, 46: 2426
14 Nandan R, Roy G G, Lienert T J, et al. Three-dimensional heat and material flow during friction stir welding of mild steel [J]. Acta Mater., 2007, 55: 883
15 Kang J, Feng Z C, Frankel G S, et al. Friction stir welding of Al alloy 2219-T8: part I-evolution of precipitates and formation of abnormal Al2Cu agglomerates [J]. Metall. Mater. Trans., 2016, 47A: 4553
16 Ni D R, Chen D L, Yang J, et al. Low cycle fatigue properties of friction stir welded joints of a semi-solid processed AZ91D magnesium alloy [J]. Mater. Des., 2014, 56: 1
17 Xu W F, Liu J H, Luan G H, et al. Temperature evolution, microstructure and mechanical properties of friction stir welded thick 2219-O aluminum alloy joints [J]. Mater. Des., 2009, 30: 1886
18 Li T Y, Chen F R, Zhang Z H. Research on microstructure and properties of 8mm 7A52 aluminium alloy by FSW [J]. Hot Working Technol., 2016, 45(17): 50
李泰岩, 陈芙蓉, 张志函. 8mm厚7A52铝合金搅拌摩擦焊组织及性能分析 [J]. 热加工工艺, 2016, 45(17): 50
19 Yang M, Li C B, Liu S D, et al. Effect of artificial aging on microstructure and mechanical properties of friction stir welded joint of 7003/7046 Al-alloys [J]. Chin. J. Mater. Res., 2020, 34: 495
杨梦, 李承波, 刘胜胆等. 人工时效对7003/7046铝合金搅拌摩擦焊接头组织和力学性能的影响 [J]. 材料研究学报, 2020, 34: 495
20 Liu S D, Li C B, Han S Q, et al. Effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy [J]. J. Alloys Compd., 2015, 625: 34
21 Frigaard Ø, Grong Ø, Midling O T. A process model for friction stir welding of age hardening aluminum alloys [J]. Metall. Mater. Trans. A, 2001, 32: 1189
22 Kumar M, Poletti C, Degischer H P. Precipitation kinetics in warm forming of AW-7020 alloy [J]. Mater. Sci. Eng. A, 2013, 561: 362
23 Ogura T, Hirose A, Sato T. Effect of PFZ and grain boundary precipitate on mechanical properties and fracture morphologies in Al-Zn-Mg(Ag) alloys [J]. Mater. Sci. Forum, 2010, 638-642: 297
24 Ren S R, Ma Z Y, Chen L Q. Effect of initial butt surface on tensile properties and fracture behavior of friction stir welded Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng. A, 2008, 479: 293
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!