Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (6): 433-440    DOI: 10.11901/1005.3093.2020.225
ARTICLES Current Issue | Archive | Adv Search |
Pullout Behavior of Steel Fiber in Ultra-high-performance Concrete Subjected to Freeze-thaw
XIE Ruifeng1,2, WU Yunfei2(), TANG Baixiao3
1.School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.Civil Engineering College, Huzhou Vacational and Technical College, Huzhou 313099, China
3.School of Economics & Management, Ankang University, Ankang 725000, China
Cite this article: 

XIE Ruifeng, WU Yunfei, TANG Baixiao. Pullout Behavior of Steel Fiber in Ultra-high-performance Concrete Subjected to Freeze-thaw. Chinese Journal of Materials Research, 2021, 35(6): 433-440.

Download:  HTML  PDF(5224KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of inclined angle and embedment depth on the pull-out behavior of single fiber within ultra-high-performance concrete subjected to 0~1500 freeze-thaw (F-T) cycles were investigated by pull-out test and nano-indentation meter. The results show that the peak values of pull-out load of steel fiber with different inclination angle and embedment depth decrease with the increasing freeze-thaw cycles, and reach the maximum value at 50° inclination angle. The micropores in the interface transition zone (ITZ) of steel fiber-cement paste gradually increase and converge, correspondingly, the thickness of ITZ increases from 20 μm to 65 μm. The mechanical properties of the local area composed of steel fiber and its surrounding component phases in ITZ decrease little. The macro effective elastic modulus of ITZ decreases with the increasing freeze-thaw cycles, and the decrease range is greater after 600 F-T cycles. The degradation of microstructure and macro mechanical properties of ITZ is the main reason for the decrease of bonding properties of the steel fiber.

Key words:  inorganic non-metallic materials      steel fiber pull-out behavior      nanoindentation test      bond properties      microstructure      mechanical properties     
Received:  11 June 2020     
ZTFLH:  TU528.58  
Fund: National Natural Science Foundation of China(51679136);Ankang College's High-level Project Special Fund(2016AYPYZX13);Shaanxi Provincial Education Special Fund(18JK0018)
About author:  WU Yunfei, Tel: (0572)2363628, E-mail: 2020047@hzvtc.net.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.225     OR     https://www.cjmr.org/EN/Y2021/V35/I6/433

Cement

/kg·m-3

Silica fume

/kg·m-3

Fine sand

/kg·m-3

Steel fiber

/kg·m-3

Superplasticizer

/L·m-3

Water

/kg·m-3

W

/cm

890157934140571930.18
Table 1  Existing mix design of UHPC
Fig.1  Pull-out load-slip curves of inclined steel fiber under (a) 0 F-T cycles, (b) 300 F-T cycles, (c) 600 F-T cycles, (d) 900 F-T cycles, (e) 1200 F-T cycles, (f) 1500 F-T cycles
Fig.2  Change of pull-out load of steel fiber with different with different inclining angles
Fig.3  Pull-out load-slip curves of fiber with different embedment depth under (a) 0 F-T cycles, (b) 300 F-T cycles, (c) 600 F-T cycles, (d) 900 F-T cycles, (e) 1200 F-T cycles, (f) 1500 F-T cycles
Fig.4  Change of pull-out load of steel fiber with different with different embedded depth
Fig.5  Steel fiber surface nanoindentation array (a) and ITZ surface nanoindentation array (b)
Fig.6  Contour map of elastic modulus distribution of ITZ under (a) 0 F-T cycles, (b) 300 F-T cycles, (c) 600 F-T cycles, (d) 900 F-T cycles, (e) 1200 F-T cycles, (f) 1500 F-T cycles
F-T cycles030060090012001500
Ehom/GPa26.3226.2025.4124.1922.7220.53
Table 2  Macroscopic effective elastic modulus of ITZ under F-T cycles
Fig.7  Change of relative modulus and macroscopic effective elastic modulus of micro-constituent phase in ITZ and steel fiber
1 Shi C, Wu Z, Xiao J, et al. A review on ultra-high performance concrete: Part I. Raw materials and mixture design [J]. Constr. Build. Mater., 2015, 101(30):741
2 Park S H, Kim D J, Ryu G S, et al. Tensile behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete [J]. Cement Concr. Compo., 2012, 34(2):172
3 Abdallah S, Fan M, Cashell K A. Bond-slip behavior of steel fibers in concrete after exposure to elevated temperatures [J]. Constr. Build. Mater., 2017, 140:542
4 Naaman A E, Namur G G, Alwan J M, et al. Fiber pullout and bond slip. I: Analytical study [J]. Struct. Eng., 1991, 117(9): 2769
5 Li S H, Zeng Q Y, Xiao Y L, et al. Biomimicry of bamboo bast fiber with engineering composite materials [J]. Mat. Sci. Eng. C- Bio. S., 1995, 3(2):125
6 Leung C K, Li V C. New strength-based model for the debonding of discontinuous fibers in an elastic matrix [J]. Mater. Ence, 1991, 26(22):5996
7 Li J X. A new model for the pull-out of single fibers from low density polyethylene [J]. Compos., 1994, 25(7):558
8 Kelly A, Tyson W R. Tensile properties of fiber-reinforced metals: Copper/tungsten and copper/molybdenum [J]. Mech. Phys. Solids, 1965, 13(6):329
9 Vekey R C D, Majumdar A J. Determining bond strength in fiber-reinforced composites [J]. Mag. Concrete Res., 1968, 20(65): 229
10 Atkinson C, Avila J, Betz E, et al. The rod pull out problem, theory and experiment [J]. Mech. Phys. Solids, 1982, 30(3):97
11 Gurney C, Hunt J. Quasi-Static Crack Propagation [A]. PhilTrans Royal Soc [C]. London, 1967, 299A:508
12 Gao Y, Mai Y, Cotterell B. Fracture of fiber-reinforced materials [J]. Appl. Math. Phys., 1988, 39(4): 550
13 Takaku A, Arridge R G C. The effect of interfacial radial and shear stress on fiber pull-out in composite materials [J]. Phys. D. Appl. Phys., 1973, 6(17):2038.
14 Sorensen C O, Berge E, Nikolaisen E B, et al. Investigation of fiber distribution in concrete batches discharged from ready-mix truck [J]. Int. J. Concr. Struct. M., 2014, 8(4): 279
15 Abdallah S, Fan M, Zhou X. Pull-out behavior of hooked end steel fibers embedded in ultra-high performance mortar with various W/B ratios [J]. Int. J. Concr. Struct. M., 2017, 11(2): 301
16 Robins P, Austin S, Jones P. Pull-out behavior of hooked steel fibres [J]. Mater. Struct., 2002, 35(251): 434
17 Guduli X V, Dang T, Gü, et al. Computational modeling of fiber flow during casting of fresh concrete [J]. Comput. Mech., 2019
18 Laranjeira de Oliveira F. Design-oriented constitutive model for steel fiber reinforced concrete [D]. Barcelona, Spain: Univ. Politècnica de Catalunya, 2010
19 Cunha V M. Steel fiber reinforced self-compacting concrete (from micromechanics to composite behavior) [D]. Braga, Portugal: Univ. of Minho, 2010
20 Pan J S, Liu J Z, Zhang Q Q, et al. Study on pull-out behavior of single steel fiber in ultra-high performance fiber reinforced cement-based composites [J]. Jiangsu Build. Mater., 2018, (2): 15
潘竟盛, 刘建忠, 张倩倩等. 超高性能纤维增强水泥基复合材料单根钢纤维拔出行为研究 [J]. 江苏建材, 2018, (2): 15
21 Dong X J, Ding Y N. Experimental study on the mechanical properties of SFHPC after exposure to high temperatures [A]. National Conference on fiber reinforced concrete [C]. Zhengzhou, 2006
董香军, 丁一宁. 高温后钢纤维高性能混凝土力学性能试验研究 [A]. 全国钢纤维混凝土学术会议 [C]. 郑州, 2006
22 Zhang H, Rena Y. Inclined Fiber Pullout from a Cementitious Matrix: A Numerical Study [J]. Mater., 2016, 9(10), 800
23 Lee Y, Kang S T, Kim J K. Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix [J]. Constr. Build. Mater., 2010, 24(10): 2030
24 Hsueh, Chun-Hway. Evaluation of interfacial shear strength, residual clamping stress and coefficient of friction for fiber-reinforced ceramic composites [J]. Acta Metal. Et. Mater., 1990, 38(3): 403
25 Oliver W C. An improved technique for determinating hardness and elastic modulus using load and displacement sensing [J]. J. Mater. Res., 1992, 7
26 Jianzhuang Xiao, Wengui Li, Zhihui Sun, et al. Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation [J]. Cement. Concrete Compos., 2013, 37(3): 276
27 Zhao S, Sun W. Application and research progress of nanoindentation in the field of cement-based materials [J]. J. Ceram. Soc., 2011, 39(1): 164
赵素晶, 孙伟. 纳米压痕在水泥基材料中的应用与研究进展 [J]. 硅酸盐学报, 2011, 39(1):164
28 Yao W, Liang K, He L. Determination of elastic-plasticity and creep of calcium-silic ate-hydrate ate-hydrate gel [J]. Chin. J. Mater. Res., 2010, 24(2): 123
姚武, 梁慷, 何莉. 应用纳米压痕技术表征水化硅酸钙凝胶 [J]. 材料研究学报, 2010, 24(2): 123
29 Xiao J Z, Li W G, Sun Z H, et al. Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation [J]. Cement Concr. Compo., 2013, 37: 276
30 Zaoui A. Continuum micromechanics: survey [J]. ASCE Journal of Eng. Mech. 2002, 128(8): 808
31 Eshelby J D. The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems [A]. Royal Society A [C]. London, 1957, 241(1226): 376
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[10] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[11] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[12] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[13] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[14] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[15] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
No Suggested Reading articles found!