|
|
Microstructure and Recrystallization Behavior of 18.5%Cr High-Mn Low-Ni Type Duplex Stainless Steel during Hot Compression with Large Deformation |
PAN Xiaoyu, YANG Yinhui( ), NI Ke, CAO Jianchun, QIAN Hao |
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China |
|
Cite this article:
PAN Xiaoyu, YANG Yinhui, NI Ke, CAO Jianchun, QIAN Hao. Microstructure and Recrystallization Behavior of 18.5%Cr High-Mn Low-Ni Type Duplex Stainless Steel during Hot Compression with Large Deformation. Chinese Journal of Materials Research, 2021, 35(5): 381-393.
|
Abstract The 18.5% Cr low nickel type duplex stainless steel with high manganese content was compressed by using thermal simulation test machine with large deformation of 70% under deformation conditions of 1123~1423 K/0.01~0.1 s-1, while the microbstructure characteristics and softening mechanism of two phases during thermal deformation were investigated. The results show that the thermal compression softening in the range of 0.01~0.1 s-1/1123~1223 K was dominated by recrystallization of ferrite phase, while in the range of 0.1 s-1/1323~1423 K and 10 s-1/1223 K was dominated by recrystallization of austinite phase. When deformed at 1223 K and 0.01~10 s-1, the dislocation tangles in the ferrite phase evolved into dislocation cells and the dislocation lines appeared with the increase of strain rate, and the substructure of austenite phase transformed into fine recrystallized grains. When deformed at 0.1 s-1 and 1123~1323 K the substructure of the dislocation cells gradually formed due to the increase of dislocation density in ferrite phase with increasing deformation temperature, but the deformation microstructure in austenite phase changed from DRV to DRX with the decrease of dislocation density. The deformation apparent activation energy Q and the apparent stress exponent n were calculated as 514.29 kJ/mol and 7.13 respectively based on thermal deformation equation, and the constitutive equation with Z parameter was established. Meanwhile, the critical conditions of DRX have been obtained by the relationship between work hardening rate and flow stress, and the relationships between Z parameter and the critical conditions were also determined. The hot working map analysis shows that the instability zone gradually decreases with increasing deformation strain, and the optimal processing zones are within the range of 1348~1432 K/1~10 s-1, and corresponding values of power dissipation coefficient are above 0.4.
|
Received: 23 June 2020
|
|
Fund: National Natural Science Foundation of China(51461024) |
About author: YANG Yinhui, Tel: 13518726308, E-mail: yyhyanr@sina.com
|
1 |
Yang Y H, Yan B. The microstructure and flow behavior of 2205 duplex stainless steels during high temperature compression deformation [J]. Mater. Sci. Eng. A, 2013, 579: 194
|
2 |
Solomon H D, Devine T M. Duplex stainless steels [A]. Proceedings of Conference on Duplex Stainless Steels [C]. Metals Park, OH: ASM, 1983: 693
|
3 |
Momeni A, Abbasi S M, Shokuhfar A. Hot compression behavior of As-cast precipitation-hardening stainless steel [J]. J. Iron Steel Res. Int., 2007, 14: 66
|
4 |
Niewielski G, Radwanski K, Kuc D. The influence of hot-working processing on plasticity and structure of duplex steel [J]. Arch. Mater. Sci. Eng., 2007, 28: 325
|
5 |
Huang Y L, Wang J B, Ling X S, et al. Research development of hot processing map theory [J]. Mater. Rev., 2008, 22(suppl.3): 173
|
|
黄有林, 王建波, 凌学士等. 热加工图理论的研究进展 [J]. 材料导报, 2008, 22(): 173
|
6 |
Yang S L, Shen J, Chen L Y, et al. Dynamic evolution of microstructure of Al-Cu-Li alloy during hot deformation [J]. Chin. J. Nonferr. Met., 2019, 29: 674
|
|
杨胜利, 沈健, 陈利阳等. Al-Cu-Li合金热变形过程中微观组织的动态演变规律 [J]. 中国有色金属学报, 2019, 29: 674
|
7 |
Dehghan-Manshadi A, Hodgson P D. Effect of δ-ferrite co-existence on hot deformation and recrystallization of austenite [J]. J. Mater. Sci., 2008, 43: 6272
|
8 |
Fan G W, Liu J, Han P D, et al. Hot ductility and microstructure in casted 2205 duplex stainless steels [J]. Mater. Sci. Eng., 2009, 515A: 108
|
9 |
Cizek P, Wynne B P. A mechanism of ferrite softening in a duplex stainless steel deformed in hot torsion [J]. Mater. Sci. Eng. A, 1997, 230: 88
|
10 |
Li F L, Yang W Y, Sun Z Q. Influence of Mn content on dynamic recrystallization of ferrite in low carbon steels [J]. Acta Metall. Sin., 2004, 40: 1257
|
|
李龙飞, 杨王玥, 孙祖庆. Mn含量对低碳钢中铁素体动态再结晶的影响 [J]. 金属学报, 2004, 40: 1257
|
11 |
Zhou R F, Yang W Y, Sun Z Q. Ferrite transformation during deformation of undercooled austenite in low carbon steels with different Mn contents [J]. Acta Metall. Sin., 2004, 40: 1
|
|
周荣锋, 杨王玥, 孙祖庆. 不同Mn含量低碳钢过冷奥氏体形变过程中的铁素体相变 [J]. 金属学报, 2004, 40: 1
|
12 |
Kang J H, Heo S J, Yoo J, et al. Hot working characteristics of S32760 super duplex stainless steel [J]. J. Mech. Sci. Technol., 2019, 33: 2633
|
13 |
Pu C B, Yang Y H, Deng Y H, et al. Effect of hot deformation parameters on pitting corrosion behavior of 23Cr-6.2Mn-2.1Ni-0.28N low nickel duplex stainless steel [J]. Trans. Mater. Heat Treat., 2020, 41(4): 99
|
|
蒲超博, 杨银辉, 邓亚辉等. 热变形参数对23Cr-6.2Mn-2.1Ni-0.28N节Ni型双相不锈钢点蚀行为的影响 [J]. 材料热处理学报, 2020, 41(4): 99
|
14 |
Xu H J, Sha X C, Kang C, et al. Effect of solid solution treatment on microstructure and mechanical properties of low nickel 2101 duplex stainless steel [J]. Trans. Mater. Heat Treat., 2020, 41(2): 82
|
|
徐海健, 沙孝春, 康超等. 固溶处理对节镍型2101双相不锈钢组织及力学性能的影响 [J]. 材料热处理学报, 2020, 41(2): 82
|
15 |
Iza-Mendia A, Piñol-Juez A, Urcola J J, et al. Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions [J]. Metall. Mater. Trans., 1998, 29A: 2975
|
16 |
Yuan X Y, Chen L Q. Hot deformation at elevated temperature and recrystallization behavior of a high manganese austenitic TWIP steel [J]. Acta Metall. Sin., 2015, 51: 651
|
|
袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为 [J]. 金属学报, 2015, 51: 651
|
17 |
Zhang F, Shen J, Xie J X, et al. Dynamic softening mechanism of 2099 alloy During hot deformation process [J]. Acta Metall. Sin., 2014, 50: 691
|
|
张飞, 沈健, 闫晓东等. 2099合金热变形过程中的动态软化机制 [J]. 金属学报, 2014, 50: 691
|
18 |
Yu J W, Liu X F, Xie J X. Study of dynamic recrystallization of a Cu-based alloy BFe10-1-1 with continuous columnar grains [J]. Acta Metall. Sin., 2011, 47: 482
|
|
余均武, 刘雪峰, 谢建新. 连续柱状晶铜基合金BFe10-1-1的动态再结晶研究 [J]. 金属学报, 2011, 47: 482
|
19 |
Chen G Q, Fu G S, Cheng Z C, et al. Determination of critical conditions of hot deformation dynamic recrystallization of 3003 aluminum alloy [J]. Trans. Mater. Heat Treat., 2017, 38(11): 133
|
|
陈贵清, 傅高升, 程超增等. 3003铝合金热变形动态再结晶临界条件的确定 [J]. 材料热处理学报, 2017, 38(11): 133
|
20 |
Cai Z W, Chen F X, Guo J Q, et al. Simulation of microstructure evolution of AZ41M magnesium alloy during dynamic recrystallization [J]. Trans. Mater. Heat Treat., 2016, 37(4): 216
|
|
蔡志伟, 陈拂晓, 郭俊卿等. AZ41M镁合金动态再结晶组织演变模拟 [J]. 材料热处理学报, 2016, 37(4): 216
|
21 |
Gao Z Y, Pan T, Wang Z, et al. Hot compressive deformation behavior of Ni-Cr-Mo-B heavy plate steel [J]. Trans. Mater. Heat Treat., 2015, 36(9): 148
|
|
高志玉, 潘涛, 王卓等. Ni-Cr-Mo-B特厚板钢的热压缩变形行为 [J]. 材料热处理学报, 2015, 36(9): 148
|
22 |
Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Mater., 1996, 44: 127
|
23 |
Chen L, Zhang Y J, Li F, et al. Modeling of dynamic recrystallization behavior of 21Cr-11Ni-N-RE lean austenitic heat-resistant steel during hot deformation [J]. Mater. Sci. Eng. A, 2016, 663: 141
|
24 |
Mirzadeh H, Najafizadeh A. Hot deformation and dynamic recrystallization of 17-4 PH stainless steel [J]. ISIJ Int., 2013, 53: 680
|
25 |
Mirzadeh H, Cabrera J M, Najafizadeh A, et al. EBSD study of a hot deformed austenitic stainless steel [J]. Mater. Sci. Eng. A, 2012, 538: 236
|
26 |
Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14: 1136
|
27 |
Urcola J J, Sellars C M. A model for a mechanical equation of state under continuously changing conditions of hot deformation [J]. Acta Metall., 1987, 35: 2659
|
28 |
Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. J. Appl. Phys., 1944, 15: 22
|
29 |
Jonas J J, Sellars C M, Tegart W J M. Strength and structure under hot-working conditions [J]. Metall. Rev., 1969, 14: 1
|
30 |
Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242 [J]. Metall. Trans. A, 1984, 15: 1883
|
31 |
Farnoush H, Momeni A, Dehghani K, et al. Hot deformation characteristics of 2205 duplex stainless steel based on the behavior of constituent phases [J]. Mater. Des., 2010, 31: 220
|
32 |
Yang S L, Shen J, Yan X D, et al. Dynamic recrystallization kinetics and nucleation mechanism of Al-Cu-Li alloy based on flow behavior [J]. Chin. J. Nonferr. Met., 2016, 26: 365
|
|
杨胜利, 沈健, 闫晓东. 基于Al-Cu-Li合金流变行为的动态再结晶动力学与形核机制 [J]. 中国有色金属学报, 2016, 26: 365
|
33 |
Su Y S, Yang Y H, Cao J C, et al. Research on hot working behavior of low-nickel duplex stainless steel 2101 [J]. Acta Metall. Sin., 2018, 54: 485
|
|
苏煜森, 杨银辉, 曹建春等. 节Ni型2101双相不锈钢的高温热加工行为研究 [J]. 金属学报, 2018, 54: 485
|
34 |
Prasad Y V R K. Author's reply: dynamic materials model: Basis and principles [J]. Metall. Mater. Trans. A, 1996, 27: 235
|
35 |
Zhang J Q, Di H S, Mao K, et al. Processing maps for hot deformation of a high-Mn TWIP steel: a comparative study of various criteria based on dynamic materials model [J]. Mater. Sci. Eng. A, 2013, 587: 110
|
36 |
Zhao X, Yang X L, Jing T F. Processing maps for use in hot working of ductile iron [J]. J. Iron Steel Res. Int., 2011, 18: 48
|
37 |
Yue C X, Zhang L W, Liao S L, et al. Research on the dynamic recrystallization behavior of GCr15 steel [J]. Mater. Sci. Eng. A, 2009, 499: 177
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|