Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (11): 873-880    DOI: 10.11901/1005.3093.2020.582
ARTICLES Current Issue | Archive | Adv Search |
Antibacterial Property and in vitro Biocompatibility of a Ti-Zr-Cu Alloy
YU Jiaying1,2,4, YANG Xixiang1,2,4, ZHAN Desong1,2,4(), YANG Ke3, REN Ling3, WANG Jingren1,2,4, XU Jiawei1,2,4
1.Department of Dental Material, School of Stomatology, China Medical University, Shenyang 110002, China
2.Liaoning Institute of Dental Research, Shenyang 110002, China
3.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4.Liaoning Province Oral Diseases Key Laboratory, Shenyang 110002, China
Cite this article: 

YU Jiaying, YANG Xixiang, ZHAN Desong, YANG Ke, REN Ling, WANG Jingren, XU Jiawei. Antibacterial Property and in vitro Biocompatibility of a Ti-Zr-Cu Alloy. Chinese Journal of Materials Research, 2021, 35(11): 873-880.

Download:  HTML  PDF(13136KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The antibacterial property and in vitro biocompatibility of a novel Ti-Zr-Cu alloy were investigated. Meanwhile, the number of bacterial colonies on the surface of Ti-Zr-Cu alloy was determined by plate co-culture method, and the morphology of nuclear and cytoskeleton, cell apoptosis and adhesion ability on Ti-Zr-Cu alloy were assessed by means of CCK8 cell proliferation detection and phyllopeptide cell staining observation. The results show that the density of bacterial colonies on the blank sample and Ti-Zr alloy surface was very high, while the number of bacterial colonies on the Ti-Zr-Cu alloy surface was very low. The antibacterial rate of Ti-Zr-Cu alloy against Staphylococcus aureus and Escherichia coli reached 98.28% and 97.67%, respectively, showing excellent antibacterial properties. The relative productivity of MC3T3-E1 cultured on Ti-Zr-Cu alloy surface for 1, 4 and 7 days were 168.8%, 109.8% and 106.5%, respectively, which were all higher than 100%, indicating that this alloy had no cytotoxicity. The adhesion and spread of cells on the surface of Ti-Zr-Cu alloy are good, which is conducive to the adhesion and further growth of adherent cells on the surface of Ti-Zr-Cu alloy, indicating that Ti-Zr-Cu alloy has good biocompatibility. Ti-Zr-Cu alloy had no adverse effect on cell apoptosis. The SEM images of the cells on the surface of Ti-Zr-Cu alloy showed that the adhesion of the cells was normal, which also indicated that the cells had good biocompatibility.

Key words:  metal material      Ti-Zr-Cu alloy      antibacterial property      biocompatibility     
Received:  05 January 2021     
ZTFLH:  R318  
Fund: National Natural Science Foundation of China(51631009);Science and Technology Plan of Liaoning Province(ZF2019032);Science and Technology Innovation R & D Plan of Shenyang City(19-112-4-028)
About author:  ZHAN Desong, Tel: (024)31927713, E-mail: zhandesong@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.582     OR     https://www.cjmr.org/EN/Y2021/V35/I11/873

AlloyTiZrCuFeCONH
Ti-ZrBal.15.200.010.040.050.070.0040.002
Ti-Zr-CuBal.14.503.000.040.040.080.0070.002
Table 1  Compositions of Ti-Zr alloy and Ti-Zr-Cu alloy (%, mass fraction)
LevelRGR/%Evaluation results
0≥100Qualified
175~99Qualified
250~74Overview
325~49Failed
40~24Failed
Table 2  Grade standard and evaluation result of cytoxicity
Fig.1  Photos of colonies of S. aureus and E. coli after co-culture with Ti-Zr alloy and Ti-Zr-Cu alloy for 24 h (a) blank group (S. aureus); (b) Ti-Zr (S. aureus); (c) Ti-Zr-Cu (S. aureus); (d) blank group (E. coli); (e) Ti-Zr (E. coli); (f) Ti-Zr-Cu (E. coli)
GroupS. aureusE. coli
Colony meanSterilizing rateColony meanSterilizing rate
Ti-Zr-Cu5±4.99(98.28±1.58)%21±4.69(97.67±0.49)%
Ti-Zr294±16.44900±12.96
blank325±18.521087±43.60
Table 3  Antibacterial rates of different materials against S. aureus and E. coli (n=4)
Fig.2  OD values of MC3T3-E1 cells measured by CCK-8 cell proliferation assay (absorbance at 450 nm)
Fig.3  Rhodamine phalloidin backbone staining of MC3T3-E1 cells on surfaces of Ti-Zr (a) and Ti-Zr-Cu (b) alloys after co-culture for 24 h
Fig.4  Flow scatters and bar graph statistical analyses of MC3T3-E1 cells on Ti-Zr and Ti-Zr-Cu alloys after co-culture for 72 h (a) Ti-Zr alloy; (b) Ti-Zr-Cu alloy; (c) normal cell viability; (d) apotoic cell viability
Fig.5  Images of scanning electron microscopy of MC3T3-E1 cells on surfaces of Ti-Zr (a) and Ti-Zr-Cu (b) alloys after co-culture for 72 h (200× and 1000×)
1 Milinkovic I, Cordaro L. Are there specific indications for the different alveolar bone augmentation procedures for implant placement? A systematic review [J]. Int J Oral Maxillofac Surg, 2014, 43(5): 606
2 Lee J S, Kim H M, Kim C S, et al. Long-term retrospective study of narrow implants for fixed dental prostheses [J]. Clin Oral Implants Res, 2013, 24(8): 847
3 Badran Z, Struillou X, Strube N, et al. Clinical performance of narrow-diameter titanium-zirconium implants: a systematic review [J]. Implant Dent, 2017, 26(2): 316
4 Thoma D S, Jones A A, Dard M, et al. Tissue integration of a new titanium-zirconium dental implant: a comparative histologic and radiographic study in the canine [J]. J Periodontol, 2011, 82(10): 1453
5 Zhang Y M, Chai F, Hornez J C, et al. The corrosion and biological behaviour of titanium alloys in the presence of human lymphoid cells and MC3T3-E1 osteoblasts [J]. Biomed Mater, 2009, 4(1): 015004
6 Ikarashi Y, Toyoda K, Kobayashi E, et al. Improved biocompatibility of titanium-zirconium (Ti-Zr) alloy: Tissue reaction and sensitization to Ti-Zr alloy compared with pure Ti and Zr in rat implantation study [J]. Mater Trans, 2005, 46(10): 2260
7 Ahn D H, Kim H J, Joo J Y, et al. Prevalence and risk factors of peri-implant mucositis and peri-implantitis after at least 7 years of loading [J]. J Periodontal Implant Sci, 2019, 49(6): 397
8 Spriano S, Bosetti M, Bronzoni M, et al. Surface properties and cell response of low metal ion release Ti-6Al-7Nb alloy after multi-step chemical and thermal treatments [J]. Biomaterials, 2005, 26(11): 1219
9 Unosson E, Tsekoura E K, Engqvist H, et al. Synergetic inactivation of Staphylococcus epidermidis and Streptococcus mutansin a TiO2/H2O2/UV system [J]. Biomatter, 2013, 3(4): e26727
10 Unosson E, Morgenstern M, Engqvist H, et al. In vitro antibacterial properties and UV induced response from Staphylococcus epidermidis on Ag/Ti oxide thin films [J]. J Mater Sci Mater Med, 2016, 27(3): 49
11 Bai B, Zhang E, Dong H, et al. Biocompatibility of antibacterial Ti-Cu sintered alloy: in vivo bone response [J]. J Mater Sci Mater Med, 2015, 26(12): 265
12 Zhang E, Li F, Wang H, et al. A new antibacterial titanium-copper sintered alloy: preparation and antibacterial property [J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(7): 4280
13 Fowler L, Janson O, Engqvist H, et al. Antibacterial investigation of titanium-copper alloys using luminescent Staphylococcus epidermidis in a direct contact test [J]. Mater Sci Eng C Mater Biol Appl, 2019, 97: 707
14 Codita I, Caplan D M, Dragulescu E C, et al. Antimicrobial activity of copper and silver nanofilms on nosocomial bacterial species [J]. Roum Arch Microbiol Immunol, 2010, 69(4): 204
15 Russell A D, Hugo W B. Antimicrobial activity and action of silver [J]. Prog Med Chem, 1994, 31: 351
16 Michels H T, Noyce J O, Keevil C W. Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper [J]. Lett Appl Microbiol, 2009, 49(2): 191
17 Ma K, Wang M Y, Li Y, et al. Effect of different concentration of titanium-copper alloys on the differentiation of MC3T3-E1 cells [J]. Chin. J. Pract. Stomatol., 2018, 11(06): 354
马凯, 王敏雅, 李悦等. 不同质量分数的钛-铜合金对MC3T3-E1细胞分化的影响研究[J]. 中国实用口腔科杂志, 2018, 11(06): 354
18 Yin Z, Ren Y, Zhan D. Effects of copper content on the antibacterial performance and corrosion [J]. West Chin. J. Stomatol, 2018, 36(02): 178
印准, 任伊宾, 战德松. 铜含量对钴铬钼铜合金抗菌性和耐腐蚀性的影响 [J]. 华西口腔医学杂志, 2018, 36(02): 178
19 Velasco-ortega E, Jos A, Camean A M, et al. In vitro evaluation of cytotoxicity and genotoxicity of a commercial titanium alloy for dental implantology [J]. Mutat Res, 2010, 702(1): 17
20 Kikuchi M, Takahashi M, Okuno O. Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys [J]. Dent Mater, 2006, 22(7): 641
21 Ballo M K, Rtimi S, Mancini S, et al. Bactericidal activity and mechanism of action of copper-sputtered flexible surfaces against multidrug-resistant pathogens [J]. Appl Microbiol Biotechnol, 2016, 100(13): 5945
22 Scheiber I F, Mercer J F, Dringen R. Metabolism and functions of copper in brain [J]. Prog Neurobiol, 2014, 116: 33
23 Sudha V B, Singh K O, Prasad S R, et al. Killing of enteric bacteria in drinking water by a copper device for use in the home: laboratory evidence [J]. Trans R Soc Trop Med Hyg, 2009, 103(8): 819
24 Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface [J]. Appl Environ Microbiol, 2011, 77(5): 1541
25 Mathews S, Hans M, Mucklich F, et al. Contact killing of bacteria on copper is suppressed if bacterial-metal contact is prevented and is induced on iron by copper ions [J]. Appl Environ Microbiol, 2013, 79(8): 2605
26 Li M, Ma Z, Zhu Y, et al. Toward a molecular understanding of the antibacterial mechanism of copper-bearing titanium alloys against Staphylococcus aureus [J]. Adv Healthc Mater, 2016, 5(5): 557
27 Zhang E, Zheng L, Liu J, et al. Influence of Cu content on the cell biocompatibility of Ti-Cu sintered alloys [J]. Mater Sci Eng C Mater Biol Appl, 2015, 46: 148
28 Liu R, Ma Z, Kunle Kolawole S, et al. In vitro study on cytocompatibility and osteogenesis ability of Ti-Cu alloy [J]. J Mater Sci Mater Med, 2019, 30(7): 75
29 Zhuang Y, Zhang S, Yang K, et al. Antibacterial activity of copper-bearing 316L stainless steel for the prevention of implant-related infection [J]. J Biomed Mater Res B Appl Biomater, 2020, 108(2): 484
30 Wang L, Ren L, Tang T, et al. A novel nano-copper-bearing stainless steel with reduced Cu(2+) release only inducing transient foreign body reaction via affecting the activity of NF-kappaB and Caspase 3 [J]. Int J Nanomedicine, 2015, 10: 6725
31 Liu R, Memarzadeh K, Chang B, et al. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis [J]. Sci Rep, 2016, 6: 29985
32 Jones A A, Disilvestro R A, Coleman M, et al. Copper supplementation of adult men: effects on blood copper enzyme activities and indicators of cardiovascular disease risk [J]. Metabolism, 1997, 46(12): 1380
33 Sun J, Xue M, Jinjing H Y, et al. Cytotoxicity of dental metal material composition [J]. Chi J. Biomater Eng, 1997(2): 59-64, 99
孙皎, 薛淼, 今井弘一等. 牙科金属材料的组成对细胞毒性影响的研究 [J]. 中国生物医学工程学报, 1997, 59-64, 99
34 Kolawole S K, Hai W, Zhang S, et al. Preliminary study of microstructure, mechanical properties and corrosion resistance of antibacterial Ti-15Zr-xCu alloy for dental application [J]. J Biomed Mater Sci & Tech, 2020, 50: 31
35 Li G, Liu S, Zhan D, et al. Antibacterial properties and biocompatibility of SLM-fabricated medical titanium alloys [J]. Chin. J. Mater. Res., 2019, 33(2): 117
李改明, 刘思雨, 战德松等. 3D打印医用钛合金的抗菌性能和体外生物相容性 [J]. 材料研究学报,2019, 33(2): 117
36 Li C, Fu S, Liu H, et al. Research Advances on Apoptosisa [J]. World Sci-Tech R&D, 2007, (03): 45
李超, 伏圣博, 刘华玲, 马欣荣. 细胞凋亡研究进展 [J]. 世界科技研究与发展, 2007, (03): 45
37 Portt L, Norman G, Clapp C, et al. Anti-apoptosis and cell survival: a review [J]. Biochim Biophys Acta, 2011, 1813(1): 238
38 Xiong S, Mu T, Wang G, et al. Mitochondria-mediated apoptosis in mammals [J]. Protein Cell, 2014, 5(10): 737
[1] LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. 材料研究学报, 2023, 37(6): 423-431.
[2] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[3] XIAO Han, ZHOU Yuhang, CHEN Lei, ZHANG Xiongchao, CUI Yunxin, XIONG Chi. Effect of Isothermal Time on Microstructure and Properties of Thixo-extruded Tin Bronze Bushing[J]. 材料研究学报, 2022, 36(9): 641-648.
[4] HE Yufeng, WANG Li, WANG Dong, WANG Shaogang, LU Yuzhang, GU Ashan, SHEN Jian, ZHANG Jian. Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2022, 36(9): 649-659.
[5] WANG Jun, WANG Kelu, LU Shiqiang, LI Xin, OUYANG Delai, QIU Qian, GAO Xin, ZHANG Kaiming. Strain Compensation Physical Constitutive Model and Processing Map of TA5 Titanium Alloy[J]. 材料研究学报, 2022, 36(3): 175-182.
[6] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[7] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[8] YANG Dongya, LI Weitao, WANG Honggang, GAO Gui, CHENG Shengsheng, REN Junfang, TIAN Song. Effect of Counterpart Ring Surface Roughness on Wear Process of Bismuth Bronze[J]. 材料研究学报, 2021, 35(10): 732-740.
[9] YANG Qin, ZHAO Weijie, ZHAO Na, WANG Ruodi, CHEN Cheng. Preparation and Properties of a Novel AG/PVA/CB[7] Hydrogel Reinforced by Microcrystalline and Hydrogen Bonds[J]. 材料研究学报, 2020, 34(9): 691-696.
[10] GU Wei, ZHANG Zhijian, YANG Jiaquan. Effect of Preparation Process on Magnetic Properties of Amorphous Magnetic Powder Cores[J]. 材料研究学报, 2020, 34(4): 291-298.
[11] Gaiming LI,Siyu LIU,Desong ZHAN,Rui LIU,Ling REN,Ke YANG,Jingren WANG,Qiang WANG. Antibacterial Properties and Biocompatibility of SLM-fabricated Medical Titanium Alloys[J]. 材料研究学报, 2019, 33(2): 117-123.
[12] Zhiping HU, Yunbo XU, Hui LIU, Le WANG. Microstructure Evolution and Mechanical Properties of Cold-rolled Mn-Al TRIP Steel with δ Ferrite[J]. 材料研究学报, 2018, 32(3): 177-183.
[13] Shui XU, Yan ZHANG, Baodong GAO, Zhao ZHAO, Guotao CHENG, Yong ZHU. Preparation and Properties of Composite Films of Silk Fibroin/Carboxymethyl Chitosan[J]. 材料研究学报, 2017, 31(8): 612-618.
[14] Xuemeng WANG,Siqian ZHANG,Ziyao YUAN,Lijia CHEN. Effect of Heat Treatment on Mechanical Properties of Ti-3Al-8V-6Cr-4Mo-4Zr Alloy[J]. 材料研究学报, 2017, 31(6): 409-414.
[15] ZHAO Bing, XU Dake, SUN Ziqing, REN Yibin, ZHAN Desong, XIAO Keshen, YANG Ke. In Vitro Biocompatibility and Antibacterial Property of a Novel Magnesium Phosphate Whisker[J]. 材料研究学报, 2016, 30(3): 220-228.
No Suggested Reading articles found!