Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (3): 177-183    DOI: 10.11901/1005.3093.2018.131
ARTICLES Current Issue | Archive | Adv Search |
Microstructure Evolution and Mechanical Properties of Cold-rolled Mn-Al TRIP Steel with δ Ferrite
Zhiping HU1, Yunbo XU1(), Hui LIU2, Le WANG2
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China;
2 Research Instituteof Iron and Steel of Shandong Iron and Steel Group, Jinan 250101, China;
Cite this article: 

Zhiping HU, Yunbo XU, Hui LIU, Le WANG. Microstructure Evolution and Mechanical Properties of Cold-rolled Mn-Al TRIP Steel with δ Ferrite. Chinese Journal of Materials Research, 2018, 32(3): 177-183.

Download:  HTML  PDF(5692KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure evolution and mechanical properties of a cold-rolled Mn-Al transformation-induced plasticity (TRIP) steel with δ ferrite were investigated after annealed at different intercritical annealing temperature for different time. The results show that as the intercritical annealing temperature and time going up, the content of retained austenite (RA) and the product of strength and elongation (PSE) increased first and then decrease. The microstructure of the steel after annealing at 750℃ for 2 min consists of δ ferrite, intercritical ferrite and 24.7% retained austenite, which exhibited a tensile strength of 773 MPa, elongation of 39.4% and the product of strength and elongation of 30.46 GPa%. RA mainly exits at the boundaries between bulky δ ferrite and original martensite, around the recrystallization ferrite from original martensite area, and around the sub-grain boundaries inside δ ferrite.

Key words:  metal materials      TRIP steel with δ ferrite;      mechanical property      retained austenite     
Received:  09 October 2017     
ZTFLH:  TG113  
Fund: Supported by National Natural Science Foundation of China (Nos. 51174059, 51404155 & U1260204), Fundamental Research Funds for the Central Universities (No. N130407003), Program for New Century Excellent Talents in University (No. NCET-13-0111) and Program for Liaoning Excellent Talents in University (No. LR2014007)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.131     OR     https://www.cjmr.org/EN/Y2018/V32/I3/177

Fig.1  Rolling schedule for experiment steel
Fig.2  Phase diagrams of different Al content (a) 0Al, (b) 1Al, (c) 2Al, (d) 3Al
Fig.3  Microstructures of different austenizing temperatures (a) 700℃, (b) 750℃, (c) 800℃
Fig.4  SEM microstructure of the cold-rolled tested steel at different temperature (a) 650℃ (b) 700℃ (c) 750℃ (d) 800℃ (e) 850℃
Temperature
/°C
Rp0.2
/MPa
Rm
/MPa
Δ
%
Rp0.2/Rm PSE
/GPa%
RA
/%
650 667 759 20.8 0.87 15.8 12.4
700 652 751 24.1 0.85 18.2 18.2
750 631 783 39.4 0.80 30.5 24.9
800 520 920 18.3 0.57 17.0 18.6
850 789 1054 11.0 0.74 11.6 10.9
Table 1  Mechanical properties and retained austenite content of the investigated steel at different intercritical temperature
Fig.5  TEM microstructure of the investigated steel annealing at 750℃ in 2 min (a) bright field (b) dark field (c)
Fig.6  EBSD results of the tested steel annealing at 750℃ in 2 min
Fig.7  SEM microstructure of different intercritical annealing time at 750℃ (a) 1 min, (b) 2 min, (c) 5 min, (d) 10 min
Time
/min
Rm
/MPa
Δ
%
PSE
GPa%
RA
%
1 726 25 18.1 9.7
2 787 45 35.4 24.7
5 927 20 18.5 13.3
10 951 14 13.3 10.1
Table 2  Mechanical properties and retained austenite content of the investigated steel of different intercritical annealing time
[1] Dong H, Cao W Q, Shi J, et al.Microstructure and Performance Control Technology of the 3rd Generation Auto Sheet Steels[J]. Iron & Steel, 2011, 46(6): 1(董瀚, 曹文全, 时捷等. 第3代汽车钢的组织与性能调控技术[J]. 钢铁, 2011, 46(6): 1)
[2] Cao J L, Zhao A M, Li Z, et al.Mechanism of strengthening and plasticity improvement in warm rolling medium manganese steel with ultrafine grains[J]. J Univ Sci Technol B, 2013, 35(11): 1465
[3] Zhao Z Z, Yin H X, Zhao A M, et al.Effect of continuous annealing process on microstructure and mechanical properties of 5% Mn ultrafine grain TRIP steel[J]. Mater. Sci. Technol., 2014, 22(5): 54
[4] Zhan W, Hu J, Xu G F, et al.Effect of ART-annealing on microstructure and mechanical properties of continuous casting billet[J]. Iron & Steel, 2013, 48(3): 66(占炜, 胡俊, 徐国富等. 逆相变退火对连铸坯组织和力学性能的影响[J], 钢铁, 2013, 48(3): 66)
[5] Seawoong L, Seok J L, DeCooman B C. Austenite stability of ultrafine grained transformation-induced plasticity steel with Mn partitioning[J]. Scripta Mater., 2011, 65(3): 225
[6] Gibbs P J, DeCooman B C, Brown D W, et al. Strain partitioning in ultra-fine grained medium-manganese transformation induced plasticity steel[J]. Mater. Sci. Eng., A, 2014, 609(15): 323
[7] Sohn S S, Lee B J, Lee S, et al.Effect of annealing temperature on microstructural modification and tensile properties in 0.35 C-3.5 Mn-5.8 Al lightweight steel[J]. Acta Mater., 2013, 61(13): 5050
[8] Park S J, Hwang B, Lee K H, et al.Microstructure and tensile behavior of duplex low-density steel containing 5 mass% aluminum[J]. Scripta Mater., 2013, 68(6): 36
[9] Lee S, Lee S J, DeCooman B C, Reply to comments on “Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning”[J]. Scripta Mater., 2012, 66(10): 832
[10] Enloe C M, Findley K O, Parish C M, et al.Compositional evolution of microalloy carbonitrides in a Mo-bearing microalloyed steel[J]. Scripta Mater., 2013, 68(1): 55
[11] Zhao H, Shi J, Li N, et al.Effects of Si on the Microstructure and Mechanical Property of Medium Mn Steel Treated by Quenching and Partiontion Process[J]. Chin J Mater Res, 2011, 25(1): 45(赵晖, 时捷, 李楠等. Si对中锰钢淬火配分组织和性能的影响[J]. 材料研究学报, 2011, 25(1): 45)
[12] R. Wei, Enomoto M, Hadian R, et al. Growth of austenite from as-quenched martensite during intercritical annealing in an Fe-0.1C-3Mn-1.5Si alloy[J]. Acta Mater., 2013, 61(2), 697
[13] Xie J P, Wang A Q, Wang W Y, et al.Microstructural investigation of cast medium-manganese austenitic steel with composite surface[J]. Mater. Sci. Eng., A, 2008, 743(15): 483
[14] Zhang R, Cao W Q, Peng Z J, et al.Intercritical rolling induced ultrafine microstructure and excellent mechanical properties of the medium-Mn steel[J]. Mater. Sci. Eng., A, 2013, 583(42): 84
[15] Yi H L, Lee K Y, Bhadeshia H K D H. Mechanical stabilisation of retained austenite in δ-TRIP steel[J]. Mater. Sci. Eng., A, 2011, 528(18): 5900
[16] Cai Z H, Ding H, Misra R D K, et al. Unique impact of ferrite in influencing austenite stability and deformation behavior in a hot-rolled Fe-Mn-Al-C steel[J]. Mater. Sci. Eng., A, 2012, 26(12): 378
[17] Cao W Q, Wang C, Shi J, et al.Microstructure and mechanical properties of Fe-0.2C-5Mn steel processed by ART-annealing[J]. Mater. Sci. Eng., A, 2011, 528(22-23): 6661
[18] Santofimia M J, Zhao J, Petrov P, et al.Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel[J]. Acta Mater., 2011, 59(15): 6059
[1] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[2] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[4] LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. 材料研究学报, 2023, 37(6): 423-431.
[5] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[6] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[7] NIE Jingjing, GONG Zhengxuan, SUN Jingli, YANG Sida, XIA Xianchao, XU Aijie. Microstructure and Properties of Butt Welding Joints of 2195-2219 Al-alloy Plates[J]. 材料研究学报, 2023, 37(2): 152-160.
[8] XIAO Han, ZHOU Yuhang, CHEN Lei, ZHANG Xiongchao, CUI Yunxin, XIONG Chi. Effect of Isothermal Time on Microstructure and Properties of Thixo-extruded Tin Bronze Bushing[J]. 材料研究学报, 2022, 36(9): 641-648.
[9] HE Yufeng, WANG Li, WANG Dong, WANG Shaogang, LU Yuzhang, GU Ashan, SHEN Jian, ZHANG Jian. Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2022, 36(9): 649-659.
[10] WANG Guotian, LONG Zekun, WU Biao, WANG Qiang, DING Hongsheng. Effects of Pulse Current on the Microstructure and Properties of Directionally Solidified TiAl Based Alloy in Cold Crucible[J]. 材料研究学报, 2022, 36(9): 706-714.
[11] LIU Fenghua, ZHAO Wenhao, CAI Changchun, WANG Zhenjun, SHEN Gaofeng, ZHANG Yingfeng, XU Zhifeng, YU Huan. Damage Evolution and Fracture Behavior of Three-directional Orthogonal Fiber Reinforced Aluminum Matrix Composites under Longitudinal Tensile Loading[J]. 材料研究学报, 2022, 36(7): 500-510.
[12] HUANG Huan, ZHANG Xuntao, YANG Shangke, XIAO Liuxin, ZHANG Zhaoxin, YAN Lei, LIN Hailan, BIAN Jun, CHEN Daiqiang. Properties of Nylon PA6-based Nanocomposites Co-modified with Graphene Oxide/sodium Benzoate Complex Nucleating Agent[J]. 材料研究学报, 2022, 36(6): 416-424.
[13] ZHOU Haitao, HOU Xiangwu, WANG Yanbo, XIAO Lv, YUAN Yong, SUN Jingli. High-temperature Deformation Behavior and Properties of High Nb Containing TiAl Alloy[J]. 材料研究学报, 2022, 36(6): 471-480.
[14] ZHOU Yonglang, WANG Guantao, WANG Lijun, LIU Chunming. Effect of Heat Treatment Process on Microstructure and Properties of a 0.1%C-3% Mn Medium Manganese Steel of High-formability[J]. 材料研究学报, 2022, 36(5): 343-352.
[15] YU Xingfu, WANG Shijie, ZHENG Dongyue, WANG Quanzhen, SU Yong, ZHAO Wenzeng, XING Fei. Effect of Graded Solution Treatments on Microstructure and Hardness of 8Cr4Mo4V Steel[J]. 材料研究学报, 2022, 36(4): 287-297.
No Suggested Reading articles found!