Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (10): 769-777    DOI: 10.11901/1005.3093.2021.138
ARTICLES Current Issue | Archive | Adv Search |
Investigation of Strain Aging Behavior and Sensitive Temperature of X90 High Strength Pipeline Steel
YANG Jun1(), BI Zongyue2, NAN Huanghe1, LIU Haizhang2
1.Shaanxi Railway Institute, Weinan 714000, China
2.Baoji Petroleum Steel Pipe Co. Ltd. , Baoji 721008, China
Cite this article: 

YANG Jun, BI Zongyue, NAN Huanghe, LIU Haizhang. Investigation of Strain Aging Behavior and Sensitive Temperature of X90 High Strength Pipeline Steel. Chinese Journal of Materials Research, 2021, 35(10): 769-777.

Download:  HTML  PDF(3320KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure characteristics, fracture morphology, tensile properties, impact toughness at low temperature, and strain aging behavior of X90 high-strength pipeline steel were investigated by OM, SEM, TEM, tensile test and Charpy impact test. The results show that X90 high-strength pipeline steel is rather sensitive to strain aging with a sensitive temperature of 423.15 K. After aging treatment above 423.15 K, the X90 pipeline steel loses continuous yielding and strengthening characteristics, and the tensile curve changes from the round-house-type before aging to the Lüders-type yield curve. When the aging time was fixed as tag=5 min, with the increasing aging temperature Tag , the yield strength Rp0.2, tensile strength Rm and yield ratio Rp0.2/Rm of X90 steel all show an increasing trend, and the uniform elongation UEL, fracture strain εf, total energy absorbed by low-temperature impact Ak, crack formation energy Ai and crack growth energy Ap all show a decreasing trend. The microstructure of X90 steel before and after aging treatment presents more or less the same complex structure composed of fine acicular ferrite + polygonal ferrite + lath bainite + M-A constituents. Pre-straining and aging treatment are the main inducements of the strain aging behavior of pipes. In the pipe production process, the flexible leveling method could be used to replace the rigid roll leveling method, and the multi-step progressive molding method could be used to replace the one-step spiral molding method to effectively control the pre-strain. It is noted that the temperature of the present coating process should be lowered than 423.15 K to avoid any harmful heat effect on the performance of pipes. Otherwise, one should adopt other coating process, of which the applying temperature should meet the above requirement.

Key words:  metallic materials      mechanical properties      X90 pipeline steel      strain aging      sensitive temperature      microstructure     
Received:  06 February 2021     
ZTFLH:  TG142.1  
Fund: National Basic Research Program of China(2018YFC0310300);Scientific Research Fund of Shaanxi Railway Institute(KY2019-19);Innovative Team Cultivation Program of Shaanxi Railway Institute(KJTD202002);Technological Innovation Talent Cultivation Program of Shaanxi Railway Institute(KJRC202002)
About author:  YANG Jun, Tel: (0913)2221092, E-mail: yangjun01.cool@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.138     OR     https://www.cjmr.org/EN/Y2021/V35/I10/769

CSiMnPSNiCrCuNbVTiMoAlBCEPcmFe
0.050.261.950.0070.00120.210.340.220.080.030.0170.340.030.00040.21Bal.
Table 1  Chemical composition of X90 pipeline steel (mass fraction, %)
Aging treatment process

Yield strength

Rp0.2/MPa

Tensile strength

Rm/MPa

Yield ratio

Rp0.2/Rm

Uniform elongation

UEL/%

Fracture strain

εf / %

Before aging6277370.857.320.0
373.15 K+5 min6057440.817.119.6
423.15 K+5 min6617410.896.919.7
473.15 K+5 min6767450.917.119.2
483.15 K+5 min6937210.967.320.3
493.15 K+5 min6857300.947.520.2
503.15 K+5 min6867540.916.618.4
513.15 K+5 min7057420.957.519.8
523.15 K+5 min6857540.917.119.3
Table 2  Tensile properties of X90 pipeline steel before and after strain aging
Fig.1  Schematic diagram of sampling of microscopic samples
Fig.2  Effect of strain aging treatment on the characteristics of stress-strain curve of X90 high-strength pipeline steel
Fig.3  Effect of strain aging temperature on Rp0.2 and Rm (a), Rp0.2/Rm and UEL(b) and εf (c) of X90 high-strength pipeline steel
Aging treatment processTest temperature/K

Total energy

Ak/J

Crack formation energy

Ai/J

Crack growth energy

Ap/J

Before aging253.1539892306
373.15K+5min38691295
423.15K+5min37484263
473.15K+5min37083287
523.15K+5min34790257
Table 3  Low-temperature impact test results of X90 high-strength pipeline steel before and after strain aging treatment
Fig.4  Effect of strain aging treatment on the oscillographic curve (a), Ak (b) and Ai, Ap (c) of X90 high-strength pipeline steel
Fig.5  Charpy impact fracture morphology of X90 high-strength pipeline steel before (a) and after (b) strain aging treatment (Tag=523.15 K, tag=5 min)
Fig.6  OM, SEM and TEM images before (a, c, e) and after (b, d, f) strain aging treatment (Tag=523.15 K, tag=5 min) of X90 high-strength pipeline steel
1 Bi Z Y. Key technologies research for new generation large transportation capacity oil and gas pipeline manufacturing [J]. Welded Pipe Tube, 2019, 41(7): 10
毕宗岳. 新一代大输量油气管材制造关键技术研究进展 [J]. 焊管, 2019, 41(7): 10
2 Bi Z Y, Yang J, Niu H, et al. Impact toughness of base metal and welded joints of X90 high-strength pipeline steel [J]. Trans. China Weld. Inst., 2018, 39(10): 35
毕宗岳, 杨 军, 牛 辉等. X90管线钢管埋弧焊缝组织与性能分析 [J]. 焊接学报, 2018, 39(10): 35
3 Lee S I, Lee S Y, Lee S G, et al. Effect of strain aging on tensile behavior and properties of API X60, X70 and X80 pipeline steels [J]. Met. Mater. Int., 2018, 24: 1221
4 Taheri A K, Maccagno T M, Jonas J J. Dynamic strain aging and the wire drawing of low carbon steel rods [J]. ISIJ Int., 1995, 35: 1532
5 De A K, De Blauwe K, Vandeputte S, et al. Effect of dislocation density on the low temperature aging behavior of an ultra-low carbon bake hardening steel [J]. J. Alloys Compd., 2000, 310: 405
6 Jiang Y W, Niu T, An C G, et al. Strain aging behavior of X70 pipeline steel [J]. Chin. J. Mater. Res., 2016, 30: 767
姜永文, 牛 涛, 安成钢等. X70管线钢的应变时效行为 [J]. 材料研究学报, 2016, 30: 767
7 Zuo X R, Li R T. Research of strain aging in pipeline steel with a ferrite/martensite dual-phase microstructure [J]. Steel Res. Int., 2015, 86: 163
8 Ji L K, Chen H Y, Zhang J M. Study on aging effect of X80 line steel pipe mechanical properties [J]. Pet. Tubular Goods Inst., 2018, 4(6): 27
吉玲康, 陈宏远, 张继明. 时效对X80管线钢管力学性能的影响规律研究 [J]. 石油管材与仪器, 2018, 4(6): 27
9 Khotinov V A, Polukhina O N, Selivanova O V, et al. The influence of the strain aging on the mechanical properties upon extension in the metal of X80 strength grade pipes [J]. Inorg. Mater., 2019, 10: 939
10 Wiskel J B, Ma J, Valloton J, et al. Strain aging on the yield strength to tensile strength ratio of UOE pipe [J]. Mater. Sci. Technol., 2017, 33: 1319
11 Lee S W, Im I H, Hwang B. Effect of microstructure on the strain aging properties of API X70 pipeline steels [J]. Korean J. Mater. Res., 2018, 28: 702
12 Lee S W, Lee S I, Hwang B. Effect of strain aging on the tensile properties of an API X70 pipeline steel [J]. Korean J. Mater. Res., 2017, 27: 524
13 Batalha R L, Godefroid L B, De Faria G L, et al. Strain ageing in welded joints of API5L X65Q seamless pipes [J]. Weld. Int., 2017, 31: 577
14 Sung H K, Lee D H, Lee S, et al. Effects of C and Si on strain aging of strain-based API X60 pipeline steels [J]. Met. Mater. Int., 2017, 23: 450
15 Liu Y B, Yan L F, Zhang J, et al. Study on effects of aging temperature on X90 pipeline steel [J]. Pet. Tubular Goods Inst., 2016, 2(1): 32
刘宇斌, 闫丽芳, 张 娟等. 时效温度对X90管线钢的影响研究 [J]. 石油管材与仪器, 2016, 2(1): 32
16 Zheng S B, Xiong X J, Li Z P, et al. Strain aging behavior of X90 pipeline steel [J]. Heat Treat. Met., 2016, 41(6): 27
郑生斌, 熊祥江, 李中平等. X90级管线钢应变时效行为 [J]. 金属热处理, 2016, 41(6): 27
17 Wu K, Hu Q, Yang M, et al. Influence of strain aging on microstructure and properties of X90 cold bending pipe [J]. Heat Treat. Met., 2016, 41(7): 30
吴 康, 胡 强, 杨 眉等. 应变时效对X90冷弯管组织与性能的影响 [J]. 金属热处理, 2016, 41(7): 30
18 Li Y H, Chi Q, Feng H, et al. Effect of strain aging on properties of X90 line pipe [J]. Eng. Failure Anal., 2020, 118: 104844
19 Bi Z Y, Yang J, Niu H, et al. Ipmact toughness of base metal and welding seams of X90 high-strength pipeline steel [J]. Trans. Mater. Heat Treat., 2017, 38(10): 72
毕宗岳, 杨 军, 牛 辉等. X90高强管线钢母材及焊缝的冲击韧性 [J]. 材料热处理学报, 2017, 38(10): 72
20 Niu T, Jiang Y W, Li F, et al. Effect of thermo-mechanical control processing on microstructure and properties of high toughness X90 pipeline steel [J]. Chin. J. Mater. Res., 2015, 29: 948
牛 涛, 姜永文, 李 飞等. TMCP工艺对高韧性X90管线钢组织性能的影响 [J]. 材料研究学报, 2015, 29: 948
21 Guo X R, Sun C Y, Wang C H, et al. Investigation of strain rate effect by three-dimensional discrete dislocation dynamics for fcc single crystal during compression process [J]. Acta Metall. Sin., 2018, 54: 1322
郭祥如, 孙朝阳, 王春晖等. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究 [J]. 金属学报, 2018, 54: 1322
22 Gray III G T. High-strain-rate deformation: mechanical behavior and deformation substructures induced [J]. Annu. Rev. Mater. Res., 2012, 42: 285
23 Tang C J, Shang C J, Guan H L, et al. Strain hardening behavior and stress ratio of high deformability pipeline steel with ferrite/bainite multi-phase microstructure [J]. Chin. J. Mater. Res., 2016, 30: 409
汤忖江, 尚成嘉, 关海龙等. 大变形管线钢中F/B多相组织应变硬化行为和应力比研究 [J]. 材料研究学报, 2016, 30: 409
24 Duan L N, Chen Y, Liu Q Y, et al. Effect of thermo-mechanical control process on microstructure of high strength X100 pipeline steel [J]. Chin. J. Mater. Res., 2014, 28: 51
段琳娜, 陈 宇, 刘清友等. 控轧控冷工艺对高强度X100管线钢组织的影响 [J]. 材料研究学报, 2014, 28: 51
25 Nie W J, Shang C J, Guan H L, et al. Control of microstructures of ferrite/bainite (F/B) dual-phase steel and analysis of their resistance to deformation behavior [J]. Acta Metall. Sin., 2012, 48: 298
聂文金, 尚成嘉, 关海龙等. 铁素体/贝氏体(F/B)双相钢组织调控及其抗变形行为分析 [J]. 金属学报, 2012, 48: 298
26 Kumar A, Singh S B, Ray K K. Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels [J]. Mater. Sci. Eng., 2008, 474A: 270
27 Naamane S, Monnet G, Devincre B. Low temperature deformation in iron studied with dislocation dynamics simulations [J]. Int. J. Plast., 2010, 26: 84
28 Gao Y J, Quan S L, Deng Q Q, et al. Phase-field-crystal simulation of edge dislocation climbing and gliding under shear strain [J]. Acta Phys. Sin., 2015, 64: 190
高英俊, 全四龙, 邓芊芊等. 剪切应变下刃型位错的滑移机理的晶体相场模拟 [J]. 物理学报, 2015, 64: 190
29 Ma M T, Wu B R. Dual Phase Steel Physical and Mechanical Metallurgy2nd ed. [M]. Beijing: Metallurgical Industry Press, 2009: 286
马鸣图, 吴宝榕. 双相钢-物理和力学冶金. 2版 [M]. 北京: 冶金工业出版社, 2009: 286
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!