Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (6): 473-480    DOI: 10.11901/1005.3093.2019.487
ARTICLES Current Issue | Archive | Adv Search |
Effect of Solution Temperature on Microstructure and Tensile Properties of a Metastable β -Ti Alloy Ti-4Mo-6Cr-3Al-2Sn
WANG Pengyu1, ZHANG Haoyu1(), ZHANG Zhipeng1, SUN Jie2, XIE Guangming2, CHENG Jun3, CHEN Lijia1
1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
3.Northwest Institute for Non-ferrous Metal Research, Shanxi Key Laboratory of Biomedical Metal Materials, Xi’an 710016, China
Cite this article: 

WANG Pengyu, ZHANG Haoyu, ZHANG Zhipeng, SUN Jie, XIE Guangming, CHENG Jun, CHEN Lijia. Effect of Solution Temperature on Microstructure and Tensile Properties of a Metastable β -Ti Alloy Ti-4Mo-6Cr-3Al-2Sn. Chinese Journal of Materials Research, 2020, 34(6): 473-480.

Download:  HTML  PDF(4864KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Plates of a novel metastable β-Ti alloy Ti-4Mo-6Cr-3Al-2Sn (mass fraction,%) were solid solution treated at different temperatures for 0.5 h and subsequently aging treated at 400℃ for 4 h. Then the microstructure and room temperature tensile properties of the treated plates were examined by means of SEM, TEM and electronic universal testing machine. Results show that the primary α-phase decreases gradually with the increase of solution temperature. When the temperature rises above the phase transformation point the primary α-phase disappears completely, whilst almost all the plates present the microstructure of coarse β-grains, and the β-grains grow obviously. The 900℃ solution-treated plate presents good compromise in strength and plasticity with yield strength 898.7 MPa, tensile strength 962.5 MPa, and elongation at break 12.7%. Fine secondary α-phase precipitates occurred for the aged plates after solution treated at different temperatures. When the solution temperature is lower than the transformation point, the secondary α-phases are arranged in parallel or at a 60-degree inclination to the primary ones. When the solution temperature is higher than the phase transformation point, the primary α-phase almost disappeared, the precipitated secondary α-phase became coarser with larger spacing. Continuous chain of α-phases precipitated along the original β-grain boundaries in the aged plates, which were subjected to solution treatment in the temperature range 700~900℃, and the plasticity of the alloy is poor at the same time. After a combination solution and aging-treatment of 750℃/0.5 h plus 500℃/4 h, the alloy plate exhibits good compromise in strength and plasticity with tensile strength 1282 MPa, yield strength 1210.6 MPa, and the elongation at break 5.3%.

Key words:  metallic materials      metastable β-Ti alloy      different solution temperatures      tensile properties at room temperature      secondary α-phase     
Received:  18 October 2019     
ZTFLH:  TG146.23  
Fund: Foundation of State Key Laboratory of Rolling and Automation, Northeastern University(2018RALKFKT010);Liaoning Provincial Natural Science Foundation(20180550998)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.487     OR     https://www.cjmr.org/EN/Y2020/V34/I6/473

Fig.1  Microstructure of hot rolled alloy
Fig.2  SEM microstructure of alloys after solid solution at different temperatures (a) 700℃/0.5 h/WC; (b) 750℃/0.5 h/WC; (c) 800℃/0.5 h/WC; (d) 850℃/0.5 h/WC; (e) 900℃/0.5 h/WC
Fig.3  Tensile properties of the alloy after solid solution at different temperatures
Fig.4  TEM images of Ti-4Mo-6Cr-3Al-2Sn alloy in aging state at different solid solution temperatures (aging: 500℃/4 h/AC) (a) 700℃/0.5 h/WC; (b) 750℃/0.5 h/WC; (c) 800℃/0.5 h/WC; (d) 850℃/0.5 h/WC; (e) 900℃/0.5 h/WC
Fig.5  Tensile properties of aged alloys at different solution temperatures (aging: 500℃/4 h/AC)
Fig.6  TEM structure at grain boundaries of aging alloys at different solution temperatures (aging: 500℃/4 h/AC) (a) 700℃/0.5 h/WC; (b) 900℃/0.5 h/WC
Fig.7  Tensile fracture of aged alloys at room temperature at different solution temperatures (aging: 500℃/4 h/AC) (a) 700℃/0.5 h/WC; (b) 750℃/0.5 h/WC; (c) 800℃/0.5 h/WC; (d) 850℃/0.5 h/WC; (e) 900℃/0.5 h/WC
[1] Fan X G, Zhang Y, Gao P F, et al. Deformation behavior and microstructure evolution during hot working of a coarse-grained Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy in beta phase field [J]. Mater. Sci. Eng. A, 2017, 694: 24
doi: 10.1016/j.msea.2017.03.095
[2] Qin Q H, Peng H B, Fan Q H, et al. Effect of second phase precipitation on martensitic transformation and hardness in highly Ni-rich NiTi alloys [J]. J. Alloys Compd., 2018, 739: 873
doi: 10.1016/j.jallcom.2017.12.128
[3] Frutos E, Karlík M, Jiménez J A, et al. Development of new β/α″-Ti-Nb-Zr biocompatible coating with low Young's modulus and high toughness for medical applications [J]. Mater. Des., 2018, 142: 44
doi: 10.1016/j.matdes.2018.01.014
[4] Foul A, Aranas C Guo, et al. Dynamic transformation of αβ titanium at temperatures below the β-transus in commercially pure titanium [J]. Mater. Sci. Eng. A, 2018, 722: 156
doi: 10.1016/j.msea.2018.02.097
[5] Sun H Y, Zhao J, Liu Y A, et al. Effect of C addition on microstructure and mechanical properties of Ti-V-Cr burn resistant titanium alloys [J]. Chin. J. Mater. Res., 2019, 33(7): 537
doi: 10.11901/1005.3093.2019.090
(孙欢迎, 赵军, 刘翊安等. C含量对Ti-V-Cr系阻燃钛合金微观组织和力学性能的影响 [J]. 材料研究学报, 2019, 33(7): 537)
doi: 10.11901/1005.3093.2019.090
[6] Wu X Y, Chen Z Y, Cheng C, et al. Effects of heat treatment on microstructure, texture and tensile Properties of Ti65 alloy [J]. Chin. J. Mater. Res., 2019, 33(10): 785
doi: 10.11901/1005.3093.2019.110
(吴汐玥, 陈志勇, 程超等. 热处理对Ti65钛合金板材的显微组织、织构及拉伸性能的影响 [J]. 材料研究学报, 2019, 33(10): 785)
doi: 10.11901/1005.3093.2019.110
[7] Wang X M, Zhang S Q, Yuan Z Y, et al. Effect of heat treatment on mechanical properties of Ti-3Al-8V-6Cr-4Mo-4Zr alloy [J]. Chin. J. Mater. Res., 2017, 31(6): 409
doi: 10.11901/1005.3093.2016.267
(王雪萌, 张思倩, 袁子尧等. 时效处理对Ti-3Al-8V-6Cr-4Mo-4Zr合金力学性能的影响 [J]. 材料研究学报, 2017, 31(6): 409)
doi: 10.11901/1005.3093.2016.267
[8] Wang X Y, Yang J R, Zhang K R, et al. Atomic-scale observations of B2→ω-related phases transition in high-Nb containing TiAl alloy [J]. Mater. Charact., 2017, 130: 135
doi: 10.1016/j.matchar.2017.06.003
[9] Wang K, Li M Q, Liu Q. Evolution mechanisms of the primary α and β phases during α/β deformation of an α/β titanium alloy TC8 [J]. Mater. Charact., 2016, 120: 115
doi: 10.1016/j.matchar.2016.08.028
[10] Wang G Q, Zhao Z B, Yu B B, et al. Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246 [J]. Chin. J. Mater. Res., 2017, 31(5): 352
doi: 10.11901/1005.3093.2016.621
(王国强, 赵子博, 于冰冰等. 热处理工艺对Ti6246钛合金组织与力学性能的影响 [J].材料研究学报, 2017, 31(5): 352)
doi: 10.11901/1005.3093.2016.621
[11] Sasaki L, Hénaff G, Arzaghi M, et al. Effect of long term aging on the fatigue crack propagation in the β titanium alloy Ti17 [J]. Mater. Sci. Eng. A, 2017, 707: 253
doi: 10.1016/j.msea.2017.09.052
[12] Shi Z F, Guo H Z, Han J Y, et al. Microstructure and mechanical properties of TC21 titanium alloy after heat treatment [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 2882
doi: 10.1016/S1003-6326(13)62810-1
[13] Li C L, Hui S X, Ye W J, et al. Effect of solution temperature on microstructures and tensile properties of high strength Ti-6Cr-5Mo-5V-4Al alloy [J]. Mater. Sci. Eng. A, 2011, 578: 103
doi: 10.1016/j.msea.2013.04.063
[14] Yi R W, Liu H Q, Yi D Q, et al. Precipitation hardening and microstructure evolution of the Ti-7Nb-10Mo alloy during aging [J]. Mater. Sci. Eng., 2016, 63C: 577
[15] Chen Q, Wang Q J, Wang D C, et al. Effect of solution temperature on microstructure and properties of new type metastable β titanium alloy [J]. Trans. Mater. Heat Treat., 2016, 37(8): 29
(陈强, 王庆娟, 王鼎春等. 固溶温度对新型亚稳β钛合金组织与性能的影响 [J]. 材料热处理学报, 2016, 37(8): 29)
[16] Senopati G, Sutowo C, Kartika I, et al. The Effect of solution treatment on microstructure and mechanical properties of Ti-6Mo-6Nb-8Sn alloy [J]. Mater. Today: Proc., 2019, 13: 224
[17] Chen L L, Xun J M, Wen J Y, et al. Effect of solution temperature on microstructures and tensile properties of high strength Ti-6Cr-5Mo-5V-4Al alloy [J]. Mater. Sci. Eng. A, 2013, 578: 103
doi: 10.1016/j.msea.2013.04.063
[18] Wang T, Guo H Z, Wang Y W, et al. The effect of microstructure on tensile properties, deformation mechanisms and fracture models of TG6 high temperature titanium alloy [J]. Mater. Sci. Eng. A, 2011, 528(6): 2370
doi: 10.1016/j.msea.2010.12.044
[19] Zhang H Y, Wang C, Zhang S Q, et al. Evolution of secondary α phase during aging treatment in novel near β Ti-6Mo-5V-3Al-2Fe alloy [J]. Materials, 2018, 11: 2283
doi: 10.3390/ma11112283
[20] Ahmed M, Savvakin D G, Ivasishin O M, et al. The effect of thermo-mechanical processing and ageing time on microstructure and mechanical properties of powder metallurgy near β titanium alloys [J]. J. Alloys Compd., 2017, 714: 610
doi: 10.1016/j.jallcom.2017.04.266
[21] Nag S, Banerjee R, Srinivasan R, et al. ω-Assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy [J]. Acta Mater., 2009, 57: 2136
doi: 10.1016/j.actamat.2009.01.007
[22] Huang C W, Zhao Y Q, Xin S W, et al. Effect of microstructure on high cycle fatigue behavior of Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy [J]. Int. J. Fatigue, 2017, 94: 30
doi: 10.1016/j.ijfatigue.2016.09.005
[23] Huang C W, Zhao Y Q, Xin S W, et al. High cycle fatigue behavior of Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy with lamellar microstructure [J]. Mater. Sci. Eng. A, 2017, 682: 107
doi: 10.1016/j.msea.2016.11.014
[24] Zhou W, Ge P, Zhao Y Q, et al. Evolution of primary α phase morphology and mechanical properties of a novel high-strength titanium alloy during heat treatment [J]. Rare Met. Mat. Eng., 2017, 46: 2852
[25] Song Z Y, Sun Q Y, Xiao L, et al. Precipitation behavior and tensile property of the stress-aged Ti-10Mo-8V-1Fe-3.5Al alloy [J]. Mater. Sci. Eng. A, 2011, 528: 4111
doi: 10.1016/j.msea.2011.01.110
[26] Devaraj A, Joshi V V, Srivastava A, et al. A low-cost hierarchical nanostructured beta-titanium alloy with high strength [J]. Nat. Commun., 2016, 7: 11176
doi: 10.1038/ncomms11176 pmid: 27034109
[27] Chen Y Y, Du Z X, Xiao S L, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy [J]. J. Alloys Compd., 2014, 586: 588
doi: 10.1016/j.jallcom.2013.10.096
[28] Xue Q, Ma Y J, Lei J F, et al. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2325
doi: 10.1016/j.jmst.2018.04.002
[29] Li C, Zhang X Y, Li Z Y, et al. Effect of Heat Treatment on microstructure and mechanical properties of Ultra-fine grained Ti-55511 Near β titanium alloy [J]. Rare Met. Mat. Eng., 2015, 44: 327
[30] Ren L, Xiao W L, Chang H, et al. Microstructural tailoring and mechanical properties of a multi-alloyed near β titanium alloy Ti-5321 with various heat treatment [J]. Mater. Sci. Eng. A, 2018, 711: 553
doi: 10.1016/j.msea.2017.11.029
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!