|
|
Adsorption Properties of Metal-organic Framework Material MIL-53(Al)-F127 for Bisphenol A |
SUN Yue, LI Dawei, WEI Qufu( ) |
Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China |
|
Cite this article:
SUN Yue, LI Dawei, WEI Qufu. Adsorption Properties of Metal-organic Framework Material MIL-53(Al)-F127 for Bisphenol A. Chinese Journal of Materials Research, 2020, 34(5): 353-360.
|
Abstract Mesostructured metal-organic framework material MIL-53(Al)-F127 was synthesized by one-step solvothermal method, and the morphology and structure of MIL-53(Al)-F127 were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD), Fourier-transform infrared spectrometer (FTIR) and N2 adsorption-desorption (BET). The adsorption performance of MIL-53(Al)-F127 and the microporous structure MIL-53(Al) on bisphenol A in aqueous solution and the influence of the adsorbent concentration, pH, temperature were comparatively investigated. Results show that MIL-53(Al)-F127 exhibited good adsorption properties for bisphenol A in aqueous solution. The optimum pH level for the removal of BPA using MIL-53(Al)-F127 were 6. The optimum temperature for the sorption behavior of BPA on the sorbent was 30℃. The equilibrium sorption amounts of BPA on MIL-53-(Al)-F127 reached approximately 27.2 mg/g, the removal efficiency was 92% after approximately 20 min. The sorption kinetics of BPA were found to follow the quasi second order dynamic model.
|
Received: 09 October 2019
|
|
Fund: Natural Science Foundation of Jiangsu Province(BK20180628);Fundamental Research Funds for the Central Universities(JUSRP51907A);Priority Academic Program Development of Jiangsu Higher Education Institutions |
[1] |
Tsai W T. Human health risk on environmental exposure to bisphenol-A: A review [J]. J. Environ. Sci. Health, 2006, 24C: 225
|
[2] |
Kim, Y H, Lee B, Choo K H, et al. Selective adsorption of bisphenol A by organic-inorganic hybrid mesoporous silicas [J]. Micropor. Mesopor. Mat., 2011, 138: 184
|
[3] |
Dong Y, Wu D Y, Chen X C, et al. Adsorption of bisphenol A from water by surfactant-modified zeolite [J]. J. Colloid Interface Sci., 2010, 348: 585
|
[4] |
Namasivayam C, Sumithra S. Adsorptive removal of phenols by Fe(III)/Cr(III) hydroxide, an industrial solid waste [J]. Clean Technol. Environ. Policy., 2007, 9: 215
|
[5] |
Ghiaci M, Kalbasi R J, Abbaspour A. Adsorption isotherms of non-ionic surfactants on Na-bentonite (Iran) and evaluation of thermodynamic parameters [J]. Colloid Surf., 2007, 297A: 105
|
[6] |
Fang Z Q, Huang H J. Adsorption of Di-N-butyl phthalate onto nutshell-based activated carbon. Equilibrium, kinetics and thermodynamics [J]. Adsorpt. Sci. Technol., 2009, 27:685
|
[7] |
Hou S L, Lu H G, Gu Y F, et al. Conversion of water-insoluble aluminum sources into metal-organic framework MIL-53(Al) and its adsorptive removal of roxarsone [J]. Chin. J. Mater. Res., 2017, 31: 495
|
|
(侯书亮, 卢慧宫, 顾逸凡等. 水不溶性铝源合成金属有机骨架MIL-53(Al)及其对洛克沙胂的吸附 [J]. 材料研究学报, 2017, 31: 495)
|
[8] |
Serra-Crespo P, Ramos-Fernandez E V, Gascon J, et al. Synthesis and characterization of an amino functionalized MIL-101(Al): separation and catalytic properties [J]. Chem. Mater., 2011, 23: 2565
|
[9] |
Wu Y N, Li F T, Xu Y X, et al. Facile fabrication of photonic MOF films through stepwise deposition on a colloid crystal substrate [J]. Chem. Commun., 2011, 47: 10094
doi: 10.1039/c1cc12563j
|
[10] |
Yang X P, Guo X X, Zhang C H, et al. Large scale halogen-free synthesis of metal-organic framework material Fe-MIL-100 [J]. Chin. J. Mater. Res., 2017, 31: 569
doi: 10.11901/1005.3093.2016.563
|
|
(杨向平, 郭晓雪, 张成华等. 大规模无卤素合成金属有机骨架材料Fe-MIL-100 [J]. 材料研究学报, 2017, 31: 569)
doi: 10.11901/1005.3093.2016.563
|
[11] |
El-Sharkawy R G, El-Din A S B, Etaiw E D H. Kinetics and mechanism of the heterogeneous catalyzed oxidative decolorization of Acid-Blue 92 using bimetallic metal-organic frameworks [J]. Spectroc. Acta, 2011, 79A: 1969
|
[12] |
Mulder F M, Dingemans T J, Schimmel H G, et al. Hydrogen adsorption strength and sites in the metal organic framework MOF5: Comparing experiment and model calculations [J]. Chem. Phys., 2008, 351: 72
|
[13] |
Chen B L, Wang L B, Zapata F, et al. A luminescent microporous metal-organic framework for the recognition and sensing of anions [J]. J. Am. Chem. Soc., 2008, 130: 6718
|
[14] |
Jia Q X, Wang Y Q, Yue Q, et al. Isomorphous CoII and MnII materials of tetrazolate-5-carboxylate with an unprecedented self-penetrating net and distinct magnetic behaviours [J]. Chem. Commun., 2008, (40): 4894
|
[15] |
Wang F, Li F L, Xu M M, et al. Facile Synthesis of a Ag(I)-doped coordination polymer with enhanced catalytic performane in the photodegradation of azo dyes in Water [J]. J. Mater. Chem., 2015, 3A: 5908
|
[16] |
Liu D, Lang J P, Abrahams B F. Highly efficient separation of a solid mixture of naphthalene and anthracene by a reusable porous metal-organic framework through a single-crystal-to-single-crystal transformation [J]. J. Am. Chem. Soc., 2011, 133: 1042
|
[17] |
Zhang Y M, Yang L. Application of metal-organic framework for water pollution treatment [J]. Agric. Technol., 2014, 34(4): 13
|
|
(张艳梅, 杨力. 金属有机骨架材料在污水处理中的应用 [J]. 农业与技术, 2014, 34(4): 13)
|
[18] |
Ke F, Qiu L G, Yuan Y P, et al. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water [J]. J. Hazard. Mater., 2011, 196: 36
|
[19] |
He J, Yee K K, Xu Z T, et al. Thioether side chains improve the stability, fluorescence, and metal uptake of a metal-organic framework [J]. Chem. Mater., 2011, 23: 2940
|
[20] |
Liu B J, Yang F, Zou Y X. Adsorption of organic acids from aqueous solution onto metal-organic frameworks [J]. Environ. Prot. Chem. Ind., 2016, 36: 268
|
|
(刘宝鉴, 杨帆, 邹远兴. 金属有机骨架材料对水中有机酸的吸附性能 [J]. 化工环保, 2016, 36: 268)
|
[21] |
Yang C X, Liu S S, Wang H F, et al. High-performance liquid chromatographic separation of position isomers using metal- organic framework MIL-53(Al) as the stationary phase [J]. Analyst, 2012, 137: 133
|
[22] |
Zhou M M, Wu Y N, Qiao J L, et al. The removal of bisphenol A from aqueous solutions by MIL-53(Al) and mesostructured MIL-53(Al) [J]. J. Colloid Interface Sci., 2013, 405: 157
|
[23] |
Long P, Tan H Y, Liu C, et al. Research of metal organic frameworks MIL-53(Al) for adsorption Ni2+ in waste water [J]. J. Wuhan Univ. Technol., 2016, 38: 79
|
|
(龙萍, 谭海燕, 刘畅等. 金属有机骨架材料MIL-53(Al)对污水中Ni2+的吸附研究 [J]. 武汉理工大学学报, 2016, 38: 79)
|
[24] |
FeRey G, Latroche M, Serre C, et al. Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M=Al3+, Cr3+), MIL-53 [J]. Chem. Commun., 2003, (24): 2976
|
[25] |
Meilikhov M, Yusenko K, Fischer R A. The adsorbate structure of ferrocene inside [Al (OH)(bdc)]x (MIL-53): a powder X-ray diffraction study [J]. Dalton Trans., 2009, (4: 600
|
[26] |
Himsl D, Wallacher D, Hartmann M. Improving the hydrogen-adsorption properties of a hydroxy-modified MIL-53(Al) structural analogue by lithium doping [J]. Angew. Chem. Int. Edit., 2009, 48: 4639
|
[27] |
Do X D, Hoang V T, Kaliaguine S. MIL-53(Al) mesostructured metal-organic frameworks [J]. Micropor. Mesopor. Mat., 2011, 141: 135
|
[28] |
Roy X, Thompson L K, Coombs N, et al. Mesostructured prussian blue analogues [J]. Angew. Chem. Int. Edit., 2008, 47: 511
|
[29] |
Pera-Titus M, Farrusseng D. Guest-Induced gate opening and breathing phenomena in soft porous crystals: building thermodynamically consistent isotherms [J]. J. Phys. Chem., 2012, 116C: 1638
|
[30] |
Patil D V, Rallapalli P B S, Dangi G P, et al. MIL-53(Al): An efficient adsorbent for the removal of nitrobenzene from aqueous solutions [J]. Ind. Eng. Chem. Res., 2011, 50: 10516
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|