Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (5): 353-360    DOI: 10.11901/1005.3093.2019.466
ARTICLES Current Issue | Archive | Adv Search |
Adsorption Properties of Metal-organic Framework Material MIL-53(Al)-F127 for Bisphenol A
SUN Yue, LI Dawei, WEI Qufu()
Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
Cite this article: 

SUN Yue, LI Dawei, WEI Qufu. Adsorption Properties of Metal-organic Framework Material MIL-53(Al)-F127 for Bisphenol A. Chinese Journal of Materials Research, 2020, 34(5): 353-360.

Download:  HTML  PDF(1928KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mesostructured metal-organic framework material MIL-53(Al)-F127 was synthesized by one-step solvothermal method, and the morphology and structure of MIL-53(Al)-F127 were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD), Fourier-transform infrared spectrometer (FTIR) and N2 adsorption-desorption (BET). The adsorption performance of MIL-53(Al)-F127 and the microporous structure MIL-53(Al) on bisphenol A in aqueous solution and the influence of the adsorbent concentration, pH, temperature were comparatively investigated. Results show that MIL-53(Al)-F127 exhibited good adsorption properties for bisphenol A in aqueous solution. The optimum pH level for the removal of BPA using MIL-53(Al)-F127 were 6. The optimum temperature for the sorption behavior of BPA on the sorbent was 30℃. The equilibrium sorption amounts of BPA on MIL-53-(Al)-F127 reached approximately 27.2 mg/g, the removal efficiency was 92% after approximately 20 min. The sorption kinetics of BPA were found to follow the quasi second order dynamic model.

Key words:  composite      metal-organic framework      adsorption      MIL-53(Al)      MIL-53(Al)-F127      bisphenol A(BPA)     
Received:  09 October 2019     
ZTFLH:  TQ424.3  
Fund: Natural Science Foundation of Jiangsu Province(BK20180628);Fundamental Research Funds for the Central Universities(JUSRP51907A);Priority Academic Program Development of Jiangsu Higher Education Institutions

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.466     OR     https://www.cjmr.org/EN/Y2020/V34/I5/353

Fig.1  SEM image of MIL-53(Al) (a) and MIL-53(Al)-F127 (b); TEM image of MIL-53(Al) (c) and MIL-53(Al)-F127 (d)
Fig.2  FTIR spectra of MIL-53(Al) (a) and MIL-53(Al)-F127 (b)
Fig.3  XRD pattern of MIL-53(Al) (a) and MIL-53(Al)-F127 (b)
Fig.4  Nitrogen adsorption-desorption isotherm of MIL-53(Al) and MIL-53(Al)-F127 (a) pore diameter distribution (b)
Fig.5  Sorption kinetics of MIL-53(Al) and MIL-53(Al)-F127. Effect of contact time on the BPA removal efficiency (a) and the equilibrium sorption amounts (b) pseudo-first-order kinetics model of the sorption of BPA on MIL-53(Al) and MIL-53(Al)-F127 (c, d) and pseudo-second-order kinetics model (e, f)
Fig.6  Effect of adsorbent concentation on the BPA removal efficiency
Fig.7  Effect of pH on the BPA removal efficiency
Fig.8  Effect of temperature on the BPA removal efficiency
[1] Tsai W T. Human health risk on environmental exposure to bisphenol-A: A review [J]. J. Environ. Sci. Health, 2006, 24C: 225
[2] Kim, Y H, Lee B, Choo K H, et al. Selective adsorption of bisphenol A by organic-inorganic hybrid mesoporous silicas [J]. Micropor. Mesopor. Mat., 2011, 138: 184
[3] Dong Y, Wu D Y, Chen X C, et al. Adsorption of bisphenol A from water by surfactant-modified zeolite [J]. J. Colloid Interface Sci., 2010, 348: 585
[4] Namasivayam C, Sumithra S. Adsorptive removal of phenols by Fe(III)/Cr(III) hydroxide, an industrial solid waste [J]. Clean Technol. Environ. Policy., 2007, 9: 215
[5] Ghiaci M, Kalbasi R J, Abbaspour A. Adsorption isotherms of non-ionic surfactants on Na-bentonite (Iran) and evaluation of thermodynamic parameters [J]. Colloid Surf., 2007, 297A: 105
[6] Fang Z Q, Huang H J. Adsorption of Di-N-butyl phthalate onto nutshell-based activated carbon. Equilibrium, kinetics and thermodynamics [J]. Adsorpt. Sci. Technol., 2009, 27:685
[7] Hou S L, Lu H G, Gu Y F, et al. Conversion of water-insoluble aluminum sources into metal-organic framework MIL-53(Al) and its adsorptive removal of roxarsone [J]. Chin. J. Mater. Res., 2017, 31: 495
(侯书亮, 卢慧宫, 顾逸凡等. 水不溶性铝源合成金属有机骨架MIL-53(Al)及其对洛克沙胂的吸附 [J]. 材料研究学报, 2017, 31: 495)
[8] Serra-Crespo P, Ramos-Fernandez E V, Gascon J, et al. Synthesis and characterization of an amino functionalized MIL-101(Al): separation and catalytic properties [J]. Chem. Mater., 2011, 23: 2565
[9] Wu Y N, Li F T, Xu Y X, et al. Facile fabrication of photonic MOF films through stepwise deposition on a colloid crystal substrate [J]. Chem. Commun., 2011, 47: 10094
doi: 10.1039/c1cc12563j
[10] Yang X P, Guo X X, Zhang C H, et al. Large scale halogen-free synthesis of metal-organic framework material Fe-MIL-100 [J]. Chin. J. Mater. Res., 2017, 31: 569
doi: 10.11901/1005.3093.2016.563
(杨向平, 郭晓雪, 张成华等. 大规模无卤素合成金属有机骨架材料Fe-MIL-100 [J]. 材料研究学报, 2017, 31: 569)
doi: 10.11901/1005.3093.2016.563
[11] El-Sharkawy R G, El-Din A S B, Etaiw E D H. Kinetics and mechanism of the heterogeneous catalyzed oxidative decolorization of Acid-Blue 92 using bimetallic metal-organic frameworks [J]. Spectroc. Acta, 2011, 79A: 1969
[12] Mulder F M, Dingemans T J, Schimmel H G, et al. Hydrogen adsorption strength and sites in the metal organic framework MOF5: Comparing experiment and model calculations [J]. Chem. Phys., 2008, 351: 72
[13] Chen B L, Wang L B, Zapata F, et al. A luminescent microporous metal-organic framework for the recognition and sensing of anions [J]. J. Am. Chem. Soc., 2008, 130: 6718
[14] Jia Q X, Wang Y Q, Yue Q, et al. Isomorphous CoII and MnII materials of tetrazolate-5-carboxylate with an unprecedented self-penetrating net and distinct magnetic behaviours [J]. Chem. Commun., 2008, (40): 4894
[15] Wang F, Li F L, Xu M M, et al. Facile Synthesis of a Ag(I)-doped coordination polymer with enhanced catalytic performane in the photodegradation of azo dyes in Water [J]. J. Mater. Chem., 2015, 3A: 5908
[16] Liu D, Lang J P, Abrahams B F. Highly efficient separation of a solid mixture of naphthalene and anthracene by a reusable porous metal-organic framework through a single-crystal-to-single-crystal transformation [J]. J. Am. Chem. Soc., 2011, 133: 1042
[17] Zhang Y M, Yang L. Application of metal-organic framework for water pollution treatment [J]. Agric. Technol., 2014, 34(4): 13
(张艳梅, 杨力. 金属有机骨架材料在污水处理中的应用 [J]. 农业与技术, 2014, 34(4): 13)
[18] Ke F, Qiu L G, Yuan Y P, et al. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water [J]. J. Hazard. Mater., 2011, 196: 36
[19] He J, Yee K K, Xu Z T, et al. Thioether side chains improve the stability, fluorescence, and metal uptake of a metal-organic framework [J]. Chem. Mater., 2011, 23: 2940
[20] Liu B J, Yang F, Zou Y X. Adsorption of organic acids from aqueous solution onto metal-organic frameworks [J]. Environ. Prot. Chem. Ind., 2016, 36: 268
(刘宝鉴, 杨帆, 邹远兴. 金属有机骨架材料对水中有机酸的吸附性能 [J]. 化工环保, 2016, 36: 268)
[21] Yang C X, Liu S S, Wang H F, et al. High-performance liquid chromatographic separation of position isomers using metal- organic framework MIL-53(Al) as the stationary phase [J]. Analyst, 2012, 137: 133
[22] Zhou M M, Wu Y N, Qiao J L, et al. The removal of bisphenol A from aqueous solutions by MIL-53(Al) and mesostructured MIL-53(Al) [J]. J. Colloid Interface Sci., 2013, 405: 157
[23] Long P, Tan H Y, Liu C, et al. Research of metal organic frameworks MIL-53(Al) for adsorption Ni2+ in waste water [J]. J. Wuhan Univ. Technol., 2016, 38: 79
(龙萍, 谭海燕, 刘畅等. 金属有机骨架材料MIL-53(Al)对污水中Ni2+的吸附研究 [J]. 武汉理工大学学报, 2016, 38: 79)
[24] FeRey G, Latroche M, Serre C, et al. Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M=Al3+, Cr3+), MIL-53 [J]. Chem. Commun., 2003, (24): 2976
[25] Meilikhov M, Yusenko K, Fischer R A. The adsorbate structure of ferrocene inside [Al (OH)(bdc)]x (MIL-53): a powder X-ray diffraction study [J]. Dalton Trans., 2009, (4: 600
[26] Himsl D, Wallacher D, Hartmann M. Improving the hydrogen-adsorption properties of a hydroxy-modified MIL-53(Al) structural analogue by lithium doping [J]. Angew. Chem. Int. Edit., 2009, 48: 4639
[27] Do X D, Hoang V T, Kaliaguine S. MIL-53(Al) mesostructured metal-organic frameworks [J]. Micropor. Mesopor. Mat., 2011, 141: 135
[28] Roy X, Thompson L K, Coombs N, et al. Mesostructured prussian blue analogues [J]. Angew. Chem. Int. Edit., 2008, 47: 511
[29] Pera-Titus M, Farrusseng D. Guest-Induced gate opening and breathing phenomena in soft porous crystals: building thermodynamically consistent isotherms [J]. J. Phys. Chem., 2012, 116C: 1638
[30] Patil D V, Rallapalli P B S, Dangi G P, et al. MIL-53(Al): An efficient adsorbent for the removal of nitrobenzene from aqueous solutions [J]. Ind. Eng. Chem. Res., 2011, 50: 10516
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[5] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[6] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[7] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[10] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[11] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[12] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[13] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[14] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[15] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
No Suggested Reading articles found!