Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (5): 328-336    DOI: 10.11901/1005.3093.2019.456
ARTICLES Current Issue | Archive | Adv Search |
A Phase-Field Study on Spinodal Decomposition of Ferrite of Fe-Cr-Ni Stainless Steels during Thermal Ageing and Annealing
SHI Jiaqing1, XUE Fei2, PENG Qunjia2, SHEN Yao1()
1.School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.Suzhou Nuclear Power Research Institute, Suzhou 215004, China
Cite this article: 

SHI Jiaqing, XUE Fei, PENG Qunjia, SHEN Yao. A Phase-Field Study on Spinodal Decomposition of Ferrite of Fe-Cr-Ni Stainless Steels during Thermal Ageing and Annealing. Chinese Journal of Materials Research, 2020, 34(5): 328-336.

Download:  HTML  PDF(2267KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to investigate the evolution of spinodal decomposition during ageing and annealing, a phase-field model based on Cahn-Hilliard equation has been developed to simulate the microstructure evolution in ferrite of Fe-Cr-Ni stainless steels. The simulation results reveal the formation of inter-connected α' phase during thermal ageing, and the increase of wavelength and amplitude of Cr concentration fluctuation with ageing time. During the subsequent annealing treatment, it is found that α' phase dissolves into the matrix, and the wavelength continues to increase, while the amplitude starts to decrease. The simulation results also indicate that the nano-indentation hardness is positively associated with the amplitude of concentration fluctuation. And the annealing time needed for recovery of spinodal decomposition (dissolving of α' phase) is reduced by increasing annealing temperature remarkably. There is an Arrhenius-type relation between the recovery time and the annealing temperature.

Key words:  metallic materials      spinodal decomposition      phase-field method      thermal ageing      annealing     
Received:  24 September 2019     
ZTFLH:  TG142.1  
Fund: National Key Research and Development Program of China(2017YFB0702201)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.456     OR     https://www.cjmr.org/EN/Y2020/V34/I5/328

DescriptionsParametersValues
Temperature/KT683(ageing), 823(annealing)[19]
Average Cr concentration in ferrite/%, atomic fractionc029.43[19]
Average Ni concentration in ferrite /%, atomic fractioncNi3.00[19]
Gas constant/J·mol-1·K-1R8.314
Molar volume /m3·mol-1Vm7.125×10-6
Fractional linear expansion per unit Cr compositionη0.00614[44]
Young's modulus/GPaE200
Poisson's ratioμ0.28
Interatomic distance/nmr00.2482[45]
Adjustable parameter related to diffusiond10.7
Diffusion coefficient of Fe/m2·s-1DFe1.0×10-4exp(-294?kJ?mol-1RT)[40]
Diffusion coefficient of Cr/m2·s-1DCr0.2×10-4exp(-308?kJ?mol-1RT)[40]
Table 1  Parameters used in the phase-field model
Fig.1  Simulated Cr distribution in ferrite of 308L stainless steel weld metal for different ageing or annealing times with 35% Cr (atomic fraction) iso-concentration surfaces (a1) unaged, (a2) 1000 h aged, (a3) 3000 h aged, (a4) 5000 h aged, (a5) 7000 h aged, (b1) 0.3 h annealed, (b2) 0.7 h annealed, (b3) 1.0 h annealed, (b4) 1.23 h annealed, (b5) 2.35 h annealed
Fig.2  35%(atomic fraction)Cr iso-concentration surfaces obtained by APT from reference [19], the volumes are 74 nm×74 nm×51 nm, 40 nm×40 nm×100 nm, 30 nm×30 nm×90 nm, respectively. (a)unaged, (b) 7000 h aged, (c)1 h annealed
Fig.3  Simulated 1D composition profiles (a1~a3) and concentration frequency distributions (b1~b3) compared with experimental results[19], the red solid line in a3: smoothed 1D composition profile (a1, b1) unaged, (a2, b2) 7000 h aged, (a3, b3) 1 h annealed
Fig.4  Simulated wavelength of the Cr concentration fluctuation as a function of ageing (a) or annealing time (b), compared with experimental values (308L, star symbols)[19]
Fig.5  Simulated amplitude of the Cr concentration fluctuation as a function of ageing (a) or annealing time (b), compared with experimental values (308L, star symbols)[19]
Fig.6  Simulated wavelength (a) and amplitude (b) of the Cr concentration fluctuation as functions of ageing time, compared with experimental values (CF3M, star symbols)[7]. Note c0=27.38%(atomic fraction),cNi=5.42%(atomic fraction),T=623 K in this case.
Fig.7  Increase in yield strength of ferrite calculated by Eq.(9)(the black dashed line)and increase in nanoindentation hardness of ferrite from reference [48] vs ageing time (star symbols), the red solid line: ?HIN curve fitted with hyperbolic tangent function
Fig.8  Simulated results of annealing time needed for recovery vs ageing time (a), and natural logarithm of annealing time needed for recovery vs reciprocal of annealing temperature (b)
[1] Zhang B, Xue F, Li S L, et al. Non-uniform phase separation in ferrite of a duplex stainless steel [J]. Acta Mater., 2017, 140: 388
[2] Dong L, Han E H, Peng Q J, et al. Environmentally assisted crack growth in 308L stainless steel weld metal in simulated primary water [J]. Corros. Sci., 2017, 117: 1
[3] Brooks J A, Thompson A W. Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds [J]. Int. Mater. Rev., 1991, 36(1): 16
[4] Wang W, Luo K L, Lu Y H. Microstructure of welding seam and its effect on propagation of microcracks in nuclear grade Z3CN20-09M stainless steel [J]. Chin. J. Mater. Res., 2014, 28(11): 809
(王玮, 罗奎林, 陆永浩. 核级不锈钢Z3CN20-09M焊缝组织及对裂纹扩展的影响 [J]. 材料研究学报, 2014, 28(11): 809)
[5] Vitek J M, David S A, Alexander D J, et al. Low temperature aging behavior of type 308 stainless steel weld metal [J]. Acta Mater., 1991, 39(4): 503
[6] Takeuchi T, Kameda J, Nagai Y, et al. Study on microstructural changes in thermally-aged stainless steel weld-overlay cladding of nuclear reactor pressure vessels by atom probe tomography [J]. J. Nucl. Mater., 2011, 415(2): 198
[7] Pareige C, Novy S, Saillet S, et al. Study of phase transformation and mechanical properties evolution of duplex stainless steels after long term thermal ageing (>20 years) [J]. J. Nucl. Mater., 2011, 411(1-3): 90
[8] Vitek J M. G-phase formation in aged type 308 stainless steel [J]. Metall. Mater. Trans. A, 1987, 18(1): 154
[9] Danoix F, Auger P. Atom probe studies of the Fe-Cr system and stainless steels aged at intermediate temperature: a review [J]. Mater. Charact., 2000, 44(1-2): 177
[10] Soriano-Vargas O, Avila-Davila E O, Lopez-Hirata V M, et al. Effect of spinodal decomposition on the mechanical behavior of Fe-Cr alloys [J]. Mater. Sci. Eng. A, 2010, 527(12): 2910
[11] Chung H M, Leax T R. Embrittlement of laboratory and reactor aged CF3, CF8, and CF8M duplex stainless steels [J]. Mater. Sci. Technol., 1990, 6(3): 249
[12] Guo X F, Ni Y Y, Gong J M, et al. Formation of G-phase in 20Cr32Ni1Nb stainless steel and its effect on mechanical properties [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30(9: 829
[13] Mateo A, Palomino J L, Salan N, et al. Mechanical evaluation of a reversion heat treatment for a duplex stainless steel thermally embrittled [A]. Proceedings of the 11th Biennial European Conference on Fracture [C]. Warley, 1996
[14] Chung H M. Aging and life prediction of cast duplex stainless steel components [J]. Int. J. Pres. Ves. Pip., 1992, 50(1-3): 179
[15] Konosu S. Effect of reversion heat treatments on the mechanical properties of a 13% Cr steel subjected to 475℃ embrittlement [J]. Scr. Mater., 1992, 26(10): 1631
[16] Li S L, Zhang H L, Wang Y L, et al. Annealing induced recovery of long-term thermal aging embrittlement in a duplex stainless steel [J]. Mater. Sci. Eng. A, 2013, 564: 85
[17] Ding X P, Liu X, He Y L, et al. Evolution of precipitated phase during aging treatment in 316L austenitic stainless steel [J]. Chin. J. Mater. Res., 2009, 23(3): 269
(丁秀平, 刘雄, 何燕霖等. 316L奥氏体不锈钢中时效条件下析出相演变行为的研究 [J]. 材料研究学报, 2009, 23(3): 269)
[18] Takeuchi T, Kameda J, Nagai Y, et al. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels [J]. J. Nucl. Mater., 2012, 425(1-3): 60
[19] Lin X D, Peng Q J, Han E H, et al. Effect of annealing on microstructure of thermally aged 308L stainless steel weld metal [J]. Acta Metall. Sin., 2019, 55(5): 555
(林晓冬, 彭群家, 韩恩厚等. 退火对热老化308L不锈钢焊材显微结构的影响 [J]. 金属学报, 2019, 55(5): 555)
doi: 10.11900/0412.1961.2018.00365
[20] Kato M. Hardening by spinodally modulated structure in bcc alloys [J]. Acta Mater., 1981, 29(1): 79
[21] Park K H, LaSalle J C, Schwartz L H, et al. Mechanical properties of spinodally decomposed Fe-30wt% Cr alloys: Yield strength and aging embrittlement [J]. Acta Mater., 1986, 34(9): 1853
[22] Shamanth V, Ravishankar K S. Dissolution of alpha-prime precipitates in thermally embrittled S2205-duplex steels during reversion-heat treatment [J]. Results Phys., 2015, 5: 297
[23] Xu X, Westraadt J E, Odqvist J, et al. Effect of heat treatment above the miscibility gap on nanostructure formation due to spinodal decomposition in Fe-52.85 at% Cr [J]. Acta Mater., 2018, 145: 347
[24] Ujihara T, Osamura K. Kinetic analysis of spinodal decomposition process in Fe-Cr alloys by small angle neutron scattering [J]. Acta Mater., 2000, 48(7): 1629
[25] Leax T R, Brenner S S, Spitznagel J A. Atom probe examination of thermally ages CF8M cast stainless steel [J]. Metall. Mater. Trans. A, 1992, 23(10): 2725
[26] Danoix F, Auger P, Chambreland S, et al. A 3D study of G-phase precipitation in spinodally decomposed α-ferrite by tomographic atom-probe analysis [J]. Microsc. Microanal. Microstruct., 1994, 5(2): 121
[27] Fujii K, Fukuya K. Effects of radiation on spinodal decomposition of ferrite in duplex stainless steel [J]. J. Nucl. Mater., 2013, 440(1-3): 612
[28] Cahn J W. On spinodal decomposition [J]. Acta Mater., 1961, 9(9): 795
[29] Miller M K, Hyde J M, Hetherington M G, et al. Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models-I. Introduction and methodology [J]. Acta Mater., 1995, 43(9): 3385
[30] Li Y S, Li S X, Zhang T Y. Effect of dislocations on spinodal decomposition in Fe-Cr alloys [J]. J. Nucl. Mater., 2009, 395(1-3): 120
[31] Li Y S, Zhu H, Zhang L, et al. Phase decomposition and morphology characteristic in thermal aging Fe-Cr alloys under applied strain: A phase-field simulation [J]. J. Nucl. Mater., 2012, 429(1-3): 13
[32] Emo J, Pareige C, Saillet S, et al. Kinetics of secondary phase precipitation during spinodal decomposition in duplex stainless steels: A kinetic Monte Carlo model - Comparison with atom probe tomography experiments [J]. J. Nucl. Mater., 2014, 451(1-3): 361
[33] Theus G J, Weeks J R. Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [M]. Pennsylvania: The Metallurgical Society of AIME, 1988
[34] Miller M K, Anderson I M, Bentley J, et al. Phase separation in the Fe-Cr-Ni system [J]. Appl. Surf. Sci., 1996, 94: 391
[35] Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. Interfacial free energy [J]. J. Chem. Phys., 1958, 28(2): 258
[36] Dinsdale A T. SGTE data for pure elements [J]. CALPHAD, 1991, 15(4): 317
[37] Miettinen J. Thermodynamic reassessment of Fe-Cr-Ni system with emphasis on the iron-rich corner [J]. CALPHAD, 1999, 23(2): 231
[38] Andersson J O, Agren J. Models for numerical treatment of multicomponent diffusion in simple phases [J]. J. Appl. Phys., 1992, 72(4): 1350
doi: 10.1063/1.351745
[39] Wheeler A A, Boettinger W J, McFadden G B. Phase-field model for isothermal phase transitions in binary alloys [J]. Phys. Rev. A, 1992, 45(10): 7424
doi: 10.1103/PhysRevA.45.7424
[40] Dieter G E, Bacon D J. Mechanical Metallurgy [M]. New York: McGraw-Hill, 1986
[41] Rothman S J, Nowicki L J, Murch G E. Self-diffusion in austenitic Fe-Cr-Ni alloys [J]. J. Phys. F, 1980, 10(3): 383
[42] Honjo M, Saito Y. Numerical simulation of phase separation in Fe-Cr binary and Fe-Cr-Mo ternary alloys with use of the Cahn-Hilliard equation [J]. ISIJ Int., 2000, 40(9): 914.
[43] COMSOL Multiphysics software. Version 5.3. Stockholm (Sweden): COMSOL Inc. 2017
[44] Mehrer H, Stolica N. Diffusion in Solid Metals and Alloys [M]. Berlin: Springer, 1990
[45] Pareige C, Emo J, Saillet S, et al. Kinetics of G-phase precipitation and spinodal decomposition in very long aged ferrite of a Mo-free duplex stainless steel [J]. J. Nucl. Mater., 2015, 465: 383
[46] Hyde J M, Miller M K, Hetherington M G, et al. Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models-II. Development of domain size and composition amplitude [J]. Acta Mater., 1995, 43(9): 3403
[47] Li S, Wang Y, Li S, et al. Microstructures and mechanical properties of cast austenite stainless steels after long-term thermal aging at low temperature [J]. Mater. Des., 2013, 50: 886
[48] Lin X, Peng Q J, Han E H, et al. Assessment of thermal aging of austenitic stainless steel weld metal by using the double loop electrochemical potentiokinetic reactivation technique [J]. Corrosion, 2018, 75(4): 377
[49] Liu X, Wang R, Ren A, et al. Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation [J]. J. Nucl. Mater., 2014, 444(1-3): 1
[50] Tabor D. The physical meaning of indentation and scratch hardness [J]. Br. J. Appl. Phys., 1956, 7(5): 159
[51] Pumphrey P H, Akhurst K N. Aging kinetics of CF3 cast stainless steel in temperature range 300~400℃ [J]. Mater. Sci. Technol., 1990, 6(3): 211
doi: 10.1179/mst.1990.6.3.211
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!