|
|
Effect of Solution- and Aging-treatment on Microstructure and Microhardness of a Powder Metallurgy Ti-22Al-25Nb Alloy |
JIA Jianbo1,LU Chao1,YANG Zhigang1,DONG Tiantian1,GU Yongfei1,XU Yan1,2( ) |
1. Education Ministry Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Qinhuangdao 066004, China 2. College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China |
|
Cite this article:
JIA Jianbo,LU Chao,YANG Zhigang,DONG Tiantian,GU Yongfei,XU Yan. Effect of Solution- and Aging-treatment on Microstructure and Microhardness of a Powder Metallurgy Ti-22Al-25Nb Alloy. Chinese Journal of Materials Research, 2020, 34(3): 198-208.
|
Abstract The powder metallurgy (P/M) Ti-22Al-25Nb (atomic fraction, %) alloy sintered by spark plasma sintering (SPS) at 950℃/80 MPa/10 min was used as the initial material and the alloy experienced the solution treatment at the temperature range of 940~1100℃ for 10~120 min and subsequently aged at 800℃/8 h. The effect of solution- and aging-treatment on the microstructure and microhardness of P/M Ti-22Al-25Nb alloy was investigated, while the model of microhardness evolution was proposed. The results show that the grain size and uniformity of B2 phase increase with the increase of solution temperature and holding time. The growth rate of B2 phase grain is the lowest in the temperature range of 940~1010℃, and the grain size uniformity reaches the maximum 0.84 at 1100℃. The size and number of secondary lath O-phase have a significant effect on the properties of the alloy. After aging in the (B2+O) two-phase region, with the increase in the volume fraction of the secondary lath O-phase and the decrease in the size of the laths, especially the increase in the number of intersecting and entangled O/O phases, the microhardness of the alloy was enhanced. The microhardness of the alloy reached the maximum value 434.92 HV after solution and aging treatment at 1060℃/60 min/water cooling (WC)+800℃/8 h/furnace cooling (FC).
|
Received: 12 September 2019
|
|
Fund: Natural Science Foundation of Hebei Province(E2016203157) |
[1] | Feng A H, Li B B, Shen J. Recent advances on Ti2AlNb- based alloys [J]. J. Mater. Metall., 2012, 10: 30 | [1] | 冯艾寒, 李渤渤, 沈军. Ti2AlNb基合金的研究进展 [J]. 材料与冶金学报, 2012, 10: 30 | [2] | Li D Q, Boehlert C J. Processing effects on the grain-boundary character distribution of the orthorhombic phase in Ti-Al-Nb alloys [J]. Metall. Mater. Trans. A, 2005, 36: 2569 | [3] | Li Y J, Zhao Y, Li Q, et al. Effects of welding condition on weld shape and distortion in electron beam welded Ti2AlNb alloy join-ts [J]. Mater. Des., 2017, 114: 226 | [4] | Kumpfert J. Intermetallic alloys based on orthorhombic Titanium Aluminide [J]. Adv. Eng. Mater., 2001, 3: 851 | [5] | Li H B, Wang Y J, Gu Y F, et al. Bonding strength and wear resistance of Cr3C2-NiCr and Ni60A thermal spray coatings on H13 steel surface [J]. J. Yanshan Univ., 2017, 41: 496 | [5] | 李洪波, 王依敬, 顾勇飞等. H13钢表面喷涂Cr3C2-NiCr和Ni60A涂层的结合强度及耐磨性研究 [J]. 燕山大学学报, 2017, 41: 496 | [6] | Zhao J L, Yang Z N, Zhang F C. Study on carbide-free bainite microstructure and mechanical properties of 70Si3Mn steel [J]. J. Yanshan Univ., 2015, 39: 199 | [6] | 赵佳莉, 杨志南, 张福成. 70Si3Mn钢中无碳化物贝氏体组织及其性能研究 [J]. 燕山大学学报, 2015, 39: 199 | [7] | Shi B D, Peng Y, Han Y, et al. Investigation on anisotropic mechanical behavior of AZ31 Mg alloy rolling sheet [J]. J. Yanshan Univ., 2015, 39: 221 | [7] | 石宝东, 彭艳, 韩宇等. AZ31镁合金轧制板材各向异性力学性能研究 [J]. 燕山大学学报, 2015, 39: 221 | [8] | Zhou M B, Tang J L. Effect of austenitizing heating temperature on microstructure and hardness of Molybdenum-boron high strength steel [J]. J. Yanshan Univ., 2017, 41: 32 | [8] | 周明博, 唐景林. 奥氏体化加热温度对钼硼高强钢组织与硬度的影响 [J]. 燕山大学学报, 2017, 41: 32 | [9] | Kumpfert J, Kaysser W A. Othorhombic titanium aluminides: Phases, phase transformations and microstructure evolution [J]. Z. Metallkd., 2001, 92: 128 | [10] | Wang Y H, Cheng X Z, Zang J B. Development of diamond and SiC composited heat sink materials [J]. J. Yanshan Univ., 2015, 39: 390 | [10] | 王艳辉, 成晓哲, 臧建兵. 金刚石、碳化硅复合热传导材料的发展 [J]. 燕山大学学报, 2015, 39: 390 | [11] | Li H B, Han J C, Gu Y F, et al. Abrasive resistance of WC-10Co-4Cr coating deposited T10 on steel surface by HVOF [J]. J. Yanshan Univ., 2016, 40: 22 | [11] | 李洪波, 韩金成, 顾勇飞等. T10钢表面HVOF喷涂WC-10Co-4Cr涂层的耐磨性研究 [J]. 燕山大学学报, 2016, 40: 22 | [12] | Boehlert C J, Miracle D B. Part II. The creep behavior of Ti-Al-Nb O+bcc orthorhombic alloys [J]. Metall. Mater. Trans. A, 1999, 30: 2349 | [13] | Boehlert C J. Part III. The tensile behavior of Ti-Al-Nb O+Bcc orthorhombic alloys [J]. Metall. Mater. Trans. A, 2001, 32: 1977 | [14] | Li S Y. Phase transformation and superplasticity deformation mechanism in Ti2A1Nb-based alloys [D]. Harbin: Harbin Institute of Technology, 2013 | [14] | 李少雨. Ti2AlNb基合金相变及超塑性变形机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013 | [15] | Kazantseva N V, Demakov S L, Popov A A. Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb. III. Formation of transformation twins upon the B2→O phase transformation [J]. Phys. Met. Metallogr., 2007, 103: 378 | [16] | Wu Y, Yang D Z, Song G M. The formation mechanism of the O phase in a Ti3Al-Nb alloy [J]. Intermetallics, 2000, 8: 629 | [17] | Muraleedharan K, Banerjee D. Phase transformations involving the α2 and O phases in Ti-Al-Nb alloys [J]. Scr. Metall. Mater., 1993, 29: 527 | [18] | Wang W. Research on three typical microstructures and mechanical properties of Ti-22A1-25Nb Alloy [D]. Xi'an: Northwestern Polytechnical University, 2015 | [18] | 王伟. 基于三种典型显微组织的Ti-22Al-25Nb合金力学性能研究 [D]. 西安: 西北工业大学, 2015 | [19] | Zhu B, Zeng W D, Jiang Y, et al. Quantitative analysis of effect of heat treatment on microstructure and microhardness of Ti2AlNb alloy [J]. Trans. Mater. Heat Treat., 2016, 37(1): 71 | [19] | 朱斌, 曾卫东, 江悦等. 定量分析热处理对Ti2AlNb合金显微组织及硬度的影响 [J]. 材料热处理学报, 2016, 37(1): 71 | [20] | Tian W, Zhong Y, Liang X B, et al. Relationship between forming process and microstructure-properties of Ti-22Al-25Nb alloy ring [J]. Trans. Mater. Heat Treat., 2014, 35(10): 49 | [20] | 田伟, 钟燕, 梁晓波等. Ti-22Al-25Nb合金环形件成形工艺与组织性能关系 [J]. 材料热处理学报, 2014, 35(10): 49 | [21] | Ma C Y. Research on laser welding process and orgnization performance of TC4/Ti22A125Nb [D]. Ji’nan: Shandong University, 2017 | [21] | 马长语. TC4/Ti-22Al-25Nb激光焊接工艺与组织性能研究 [D]. 济南: 山东大学, 2017 | [22] | Shen L J. Process, microstructure and properties study on transient liquid phase bonding of Ti2A1Nb based alloy [D]. Nanchang: Nanchang University of Aeronautics, 2017 | [22] | 沈丽君. Ti2AlNb基合金TLP连接工艺及接头组织性能研究 [D]. 南昌: 南昌航空大学, 2017 | [23] | Zhao H Z, Lu B, Tong M, et al. Tensile behavior of Ti-22Al-24Nb-0.5Mo in the range 25~650℃ [J]. Mater. Sci. Eng., 2016, 679A: 455 | [24] | Wang W, Zeng W D, Yang J, et al. Microstructure and mechanical properties of the isothermally forged Ti-22Al-25Nb (at%) alloy [J]. Rare Met. Mater. Eng., 2016, 45: 1605 | [24] | 王伟, 曾卫东, 杨锦等. 等温锻造Ti-22Al-25Nb合金的显微组织与力学性能 [J]. 稀有金属材料与工程, 2016, 45: 1605 | [25] | Liang X B, Cheng Y J, Zhang J W, et al. Effects of heat treatment on microstructure and properties of β-forged Ti-22Al-25Nb alloy [J]. Chin. J. Nonferrous Met., 2010, 20(Suppl.1): 611 | [25] | 梁晓波, 程云君, 张建伟等. 热处理对β锻造Ti-22Al-25Nb合金组织和性能的影响 [J]. 中国有色金属学报, 2010, 20(增刊): 611 | [26] | Zhang Y, Liu J Y, Zhang J W. Microstructure transition and tensile properties of Ti-22Al-25Nb intermetallic alloy forged in β-phase zone [J]. Chin. J. Nonferrous Met., 2008, 18: 30 | [26] | 张艺, 刘俊友, 张建伟. β锻造Ti-22Al-25Nb合金的组织转变与拉伸性能 [J]. 中国有色金属学报, 2008, 18: 30 | [27] | Zhou W, Yao Z K, Ma Z. Effect of solution and aging treatment on microstructure of coarse-grain Ti-22Al-25Nb alloy [J]. Hot Work. Technol., 2018, 47(14): 208 | [27] | 周伟, 姚泽坤, 马震. 固溶和时效处理对粗晶Ti-22Al-25Nb合金显微组织的影响 [J]. 热加工工艺, 2018, 47(14): 208 | [28] | Wang S L, Zeng W D, Ma X, et al. Effect of solution temperature on microstructure of Ti-22Al-25Nb alloy [J]. Hot Work. Technol., 2009, 38(8): 106 | [28] | 王邵丽, 曾卫东, 马雄等. 固溶温度对Ti-22Al-25Nb合金微观组织的影响 [J]. 热加工工艺, 2009, 38(8): 106 | [29] | Boehlert C J, Majumdar B S, Seetharaman V, et al. The microstructural evolution in Ti-Al-Nb O+bcc orthorhombic alloys [J]. Metall. Mater. Trans., 1999, 30A: 2305 | [30] | Gil F J, Planell J A. Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys [J]. Mater. Sci. Eng., 2000, 283A: 17 | [31] | Lee D G, Li C L, Lee Y T, et al. Effect of temperature on grain growth kinetics of high strength Ti-2Al-9.2Mo-2Fe alloy [J]. Thermochim. Acta, 2014, 586: 66 | [32] | Hall E O. The Lüders deformation of mild steel [J]. J. Photoch. Photobio., 1965, 13B: 534 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|