Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (12): 915-920    DOI: 10.11901/1005.3093.2020.098
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Magnetic Properties of Fe2W-type Ferrites BaFe2-x2+CoxFe163+O27 (x=0.0~0.8)
TANG Jin1(), LI Dan2, QIN Jianchun1, ZENG Jishu1, HE Hao1, LI Yimin1, LIU Chen1
1.Research Center of Materials Science and Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
2.Center of Experimental Teaching for Common Courses, Panzhihua University, Panzhihua 617000, China
Cite this article: 

TANG Jin, LI Dan, QIN Jianchun, ZENG Jishu, HE Hao, LI Yimin, LIU Chen. Microstructure and Magnetic Properties of Fe2W-type Ferrites BaFe2-x2+CoxFe163+O27 (x=0.0~0.8). Chinese Journal of Materials Research, 2020, 34(12): 915-920.

Download:  HTML  PDF(4110KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe2W-type ferrite BaFe2-x2+CoxFe163+O27(x=0.0~0.8) was prepared by solid phase method, and of which the microstructure and magnetic properties were characterized by means of X-ray diffractometer (XRD), scanning electron microscope (SEM), infrared spectrometer (FT-IR) and vibrating sample magnetometer (PPMS-VSM), as well as Reitveld fitting method. The results show that all samples are single phase BaFe2-x2+CoxFe163+O27 without residual α-Fe2O3. The grain has a good hexagonal structure and the particle size distribution is uniform. Last but not least, the partial substitution of Co2+ forFe2+can significantly improve the saturation magnetization (Ms) at 300 K for Fe2W-type ferrite BaFe2-x2+CoxFe163+O27.

Key words:  inorganic non-metallic materials      Fe2W type ferrite      solid phase method      microstructure      magnetic properties     
Received:  02 April 2020     
ZTFLH:  TB321  
Fund: National Natural Science Foundation of China(51872004);Guangxi Science and Technology Base and Special Talent(AD19245013);Ph. D. Fund of Guangxi University of Science and Technology(19Z29)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.098     OR     https://www.cjmr.org/EN/Y2020/V34/I12/915

Co/xChemical formulaFe2O3BaCO3Co2O3
0.0BaFe2+2Fe3+16O2791.28012.530-
0.2BaCo0.2Fe1.82+Fe163+O2790.23312.5251.053
0.4BaCo0.4Fe1.62+Fe163+O2789.18512.5202.105
0.6BaCo0.6Fe1.42+Fe163+O2788.13712.5163.156
0.8BaCo0.8Fe1.22+Fe163+O2787.09012.5104.207
Table 1  Quality of reagent to prepare BaCoxFe2-x2+Fe163+O27 sample (g)
Fig.1  X-ray diffraction patterns of hexagonal ferrite BaCoxFe2-x2+Fe163+O27 (x=0.0, 0.2, 0.4, 0.6, 0.8) magnetic powders
Fig.2  Refined XRD pattern for BaCoxFe2-x2+Fe163+O27 (x=0.0, 0.2, 0.6, 0.8) hexaferrites
Fig.3  Representative SEM morphology for BaCoxFe2-x2+-Fe163+O27 magnets samples with Co concentration of x=0.6
Co/xc/nma=b/nmc/adX-ray/g·cm-3Vcell/nm3
0.03.285460.589245.57585.29330.98789
0.23.273630.587095.57605.37230.97717
0.43.283330.588165.58245.33690.98365
0.63.289570.590025.57545.29340.99175
0.83.299420.591165.58135.25720.99857
Table 2  Different parameters were calculated for BaCoxFe2-x2+Fe163+O27 containing different Co content according to XRD data
Fig.4  FT-IR spectra for BaCoxFe2-x2+Fe163+O27 (x=0.0~0.8) with the wave number in the range of 4000~400 cm-1
Fig.5  Representative hysteresis loops of the W-type hexaferrite BaCoxFe2-x2+Fe163+O27 for compositions of (a) x=0.0, (b) x=0.8
Co (x)T=300 KT=3 K
Ms /emu·g-1Hc /OeMs /emu·g-1Hc /Oe
0.079.42550112.07700
0.280.29500100.26790
0.487.5748091.89760
0.680.88375101.54690
0.879.59250104.27770
Table 3  Ms and Hc for Co substituted Fe2W hexaferrites BaCoxFe2-x2+Fe163+O27 (x=0.0~0.8) at 3 K and 300 K
Fig.6  Variation of Hc and Ms for Co substituted Fe2W hexaferrites (x=0.0~0.8) at 3 K and 300 K, respec-tively
1 Pullar R C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics [J]. Progr. Mater. Sci., 2012, 57: 1191
2 Slimani Y, Baykal A, Manikandan A. Effect of Cr3+ substitution on AC susceptibility of Ba hexaferrite nanoparticles [J]. J. Magn. Magn. Mater., 2018, 458: 204
3 Ahmad M, Ali I, Grössinger R, et al. Effects of divalent ions substitution on the microstructure, magnetic and electromagnetic parameters of Co2W hexagonal ferrites synthesized by sol-gel method [J]. J. Alloys Compd., 2013, 579: 57
4 Hemeda D M, Al-Sharif A, Hemeda O M. Effect of Co substitution on the structural and magnetic properties of Zn-W hexaferrite [J]. J. Magn. Magn. Mater., 2007, 315: L1
5 Lv F R, Liu X S, Feng S J, et al. Microstructure and magnetic properties of W-type hexagonal ferrites Ba1-xSrxFe2+2Fe3+16O27 [J]. Mater. Lett., 2015, 157: 277
6 You J H, Yoo S I. Improved magnetic properties of Zn-substituted strontium W-type hexaferrites [J]. J. Alloys Compd., 2018, 763: 459
7 Tang J, Liu X S, Li D, et al. Structure and magnetic analyses of hexaferrite Sr1-xLaxFe22+Fe163+O27 prepared via the solid-state reaction [J]. J. Mater. Sci. Mater. Electron., 2019, 30: 284
8 Singh J, Singh C, Kaur D, et al. Elucidation of phase evolution, microstructural, Mössbauer and magnetic properties of Co2+-Al3+ doped M-type Ba-Sr hexaferrites synthesized by a ceramic method [J]. J. Alloys Compd., 2017, 695: 1112
9 Iqbal M J, Khan R A. Enhancement of electrical and dielectric properties of Cr doped BaZn2 W-type hexaferrite for potential applications in high frequency devices [J]. J. Alloys Compd., 2009, 478: 847
10 Rathod V, Anupama A V, Kumar R V, et al. Correlated vibrations of the tetrahedral and octahedral complexes and splitting of the absorption bands in FTIR spectra of Li-Zn ferrites [J]. Vib. Spectr., 2017, 92: 267
11 Rostami M, Moradi M, Alam R S, et al. Characterization of magnetic and microwave absorption properties of multi-walled carbon nanotubes/Mn-Cu-Zr substituted strontium hexaferrite nanocomposites [J]. Mater. Res. Bull., 2016, 83: 379
12 El-Sayed S M, Meaz T M, Amer M A, et al. Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite [J]. Physica, 2013, 426B: 137
13 Tang J. Study on preparation, doping, morphology, structure and magnetic properties of magnetoplumbite Fe2W ferrites [D]. Hefei: Anhui University, 2019
唐锦. 磁铅石型Fe2W铁氧体的制备、掺杂、形貌、结构及磁性研究 [D]. 合肥: 安徽大学, 2019
14 Lechevallier L, Le Breton J M, Teillet J, et al. Mössbauer investigation of Sr1-xLaxFe12-yCoyO19 ferrites [J]. Physica, 2003, 327B: 135
15 Bierlich S, Reimann T, Bartsch H, et al. Co/Ti-substituted M-type hexagonal ferrites for high-frequency multilayer inductors [J]. J. Magn. Magn. Mater., 2015, 384: 1
16 Albanese G, Carbucicchio M, Asti G. Spin-order and magnetic properties of BaZn2Fe16O27(Zn2-W) hexagonal ferrite [J]. Appl. Phys., 1976, 11: 81
17 Stergiou C A, Litsardakis G. Electromagnetic properties of Ni and La doped strontium hexaferrites in the microwave region [J]. J. Alloys Compd., 2011, 509: 6609
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[10] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[11] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[12] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[13] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[14] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[15] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
No Suggested Reading articles found!