Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (9): 691-698    DOI: 10.11901/1005.3093.2019.140
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of Hybrid Proton Exchange Membranes of SPES-C/MIL-53(Al)-SO3H
HAN Guanglu(),CHEN Zhe,CAI Lifang,TIAN Junfeng,ZHANG Xuebo,MA Huanhuan
School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
Cite this article: 

HAN Guanglu,CHEN Zhe,CAI Lifang,TIAN Junfeng,ZHANG Xuebo,MA Huanhuan. Preparation and Properties of Hybrid Proton Exchange Membranes of SPES-C/MIL-53(Al)-SO3H. Chinese Journal of Materials Research, 2019, 33(9): 691-698.

Download:  HTML  PDF(5764KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

MIL-53(Al) was synthesized through hydrothermal synthesis, then sulfonic groups were introduced into MIL-53(Al) cages by sulfonation reaction to obtain MIL-53(Al)-SO3H with proton conduction property. The post-synthetic MIL-53(Al)-SO3H was incorporated into sulfonated polyarylethersulfone with cardo (SPES-C) polymer matrix to form hybrid PEMs. SEM results show that MIL-53(Al)-SO3H dispersed uniformly in SPES-C phase and no obvious interfacial defects in membranes could be observed. The TGA analysis confirmed that the membranes of PEMs have excellent thermal stability. The water uptake was enhanced with embedding MIL-53(Al)-SO3H and it presented positive correlation with composition. The incorporation of MIL-53(Al)-SO3H also inhibited the swelling ratio, indicating the excellent dimensional stability of the as-prepared hybrid PEMs. The hybrid PEMs also showed encouraging proton conductivity. The proton conductivity of the hybrid PEMs with incorporation amount of 5% (in mass fraction) MIL-53(Al)-SO3H reached to 0.15 S·cm-1, which was 32.5% higher than that of the pristine SPES-C membrane, and exceeded that of the ordinary commercial Nafion membrane (0.134 S·cm-1).

Key words:  composite      proton exchange membrane      sulfonated polyarylethersulfone      sulfonated MOF     
Received:  06 March 2019     
ZTFLH:  TB 332  
Fund: National Natural Science Foundation of China(21606211);Science and Technique Foundation (Foundation and Frontier Projects) of Henan Province(152300410127);Doctoral Research Fund of Zhengzhou University of Light Industry(2014BSJJ056)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.140     OR     https://www.cjmr.org/EN/Y2019/V33/I9/691

Fig.1  FTIR spectra of MIL-53(Al) and MIL-53(Al)-SO3H
Fig.2  XRD patterns of MIL-53(Al) and MIL-53(Al)-SO3H
Fig.3  SEM images of MIL-53(Al) (a)and MIL-53(Al)-SO3H (b)
Fig.4  Particle size distribution of MIL-53(Al)-SO3H (a) and MIL-53(Al) (b)
Fig.5  Surface SEM images of SPES-C (a), M-1 (b), M-3 (c), M-5 (d), cross-section SEM image of M-5 (e) and its corresponding EDS mapping of element Al
Fig.6  TGA curves of SPES-C, M-1, M-3 and M-5
Fig.7  Mechanical properties of SPES-C membrane and the hybrid membranes
Fig.8  Water uptake of SPES-C membrane and hybrid membranes at different temperatures
Fig.9  Radius of free volume cavity and fractional free volume of SPES-C membrane and hybrid membranes
Fig.10  Swelling ratio of SPES-C membrane and hybrid membranes at different temperatures
Fig.11  Proton conductivity of SPES-C membrane and hybrid membranes at different temperatures
1 DuL, YanX, HeG, et al. SPEEK proton exchange membranes modified with silica sulfuric acid nanoparticles [J]. Int. J. Hydrogen Energ., 2012, 37: 11853
2 LiuX, YangZ, ZhangY, et al. Electrospun multifunctional sulfonated carbon nanofibers for design and fabrication of SPEEK composite proton exchange membranes for direct methanol fuel cell application [J]. Int. J. Hydrogen Energ., 2017, 42: 10275
3 SwatiG, VaibhavK. Dramatic improvement in water retention and proton conductivity in electrically aligned functionalized CNT/SPEEK nanohybrid PEM [J]. ACS Appl. Mater. Inter., 2015, 7: 264
4 XuX, LiL, WangH, et al. Solution blown sulfonated poly(ether ether ketone) nanofiber-Nafion composite membranes for proton exchange membrane fuel cells [J]. RSS Adv., 2014, 5: 4934
5 DiZ, XieQ, LiH, et al. Novel composite proton-exchange membrane based on proton-conductive glass powders and sulfonated poly (ether ether ketone) [J]. J. Power Sources, 2015, 273: 688
6 LeeK H, ChoD H, KimY M, et al. Isomeric influences of naphthalene based sulfonated poly(arylene ether sulfone) membranes for energy generation using reverse electrodialysis and polymer electrolyte membrane fuel cell [J]. J. Membr. Sci., 2017, 535: 35
7 YukJ, LeeS, NugrahaA F, et al. Synthesis and characterization of multi-block poly(arylene ether sulfone) membranes with highly sulfonated blocks for use in polymer electrolyte membrane fuel cells [J]. J. Membr. Sci., 2016, 518: 50
8 ParkS G, ChaeK J, LeeM. A sulfonated poly (arylene ether sulfone)/polyimide nanofiber composite proton exchange membrane for microbial electrolysis cell application under the coexistence of diverse competitive cations and protons [J]. J. Membr. Sci., 2017, 540: 165
9 KuoY J, LinH L. Effects of mesoporous fillers on properties of polybenzimidazole composite membranes for hightemperature polymer fuel cells [J]. Int. J. Hydrogen Energ., 2018, 43: 4448
10 YangJ, JiangH, GaoL, et al. Fabrication of crosslinked polybenzimidazole membranes by trifunctional crosslinkers for high temperature proton exchange membrane fuel cells [J]. Int. J. Hydrogen Energ., 2018, 43: 3299
11 SinghaS, JanaT. Effect of composition on the properties of PEM based on polybenzimidazole and poly (vinylidene fluoride) blends [J]. Polymer, 2014, 55: 594-601.
12 DasA, GhoshP, GangulyS, et al. Salt-leaching technique for the synthesis of porous poly (2, 5-benzimidazole)(ABPBI) membranes for fuel cell application [J]. J. Appl. Polym. Sci., 2018, 135
13 LeeC H, ParkH B, ChungY S, et al. Water sorption, proton conduction, and methanol permeation properties of sulfonated polyimide membranes cross-linked with N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES) [J]. Macromolecules, 2006, 39: 755
14 BaratiS, AbdollahiM, KhoshandamB, et al. Highly proton conductive porous membranes based on polybenzimidazole/lignin blends for high temperatures proton exchange membranes: preparation, characterization and morphology-proton conductivity relationship [J]. Int. J. Hydrogen Energ., 2018, 43: 19681
15 ElakkiyaS, ArthanareeswaranG, VenkateshK, et al. Enhancement of fuel cell properties in polyethersulfone and sulfonated poly(ether ether ketone) membranes using metal oxide nanoparticles for proton exchange membrane fuel cell [J]. Int. J. Hydrogen Energ., 2018, 43: 21750
16 WangK, YangL, WeiW, et al. Phosphoric acid doped poly(ether sulfone benzotriazole) for high temperature proton exchange membrane fuel cell applications [J]. J. Membr. Sci., 2018, 549: 23
17 ZhangY X, ZhuX L, JianX G. Preparation of sulfonated poly (phthalazinone ether ketone ketone) and properties of the composite membranes SPPEKK/BPO4 [J]. Chin. J. Mater. Res., 2009, 23(2): 215
17 张耀霞, 朱秀玲, 蹇锡高. 磺化聚芳醚酮酮的制备及磷酸硼杂化膜的性能 [J]. 材料研究学报,2009, 23(2): 215)
18 LiuD, PengJ, LiZ, et al. Improvement in the mechanical properties, proton conductivity, and methanol resistance of highly branched sulfonated poly (arylene ether)/graphene oxide grafted with flexible alkyl sulfonated side chains nanocomposite membranes [J]. J. Power Sources, 2018, 378: 451
19 BaeI, OhK H, YunS H, et al. Asymmetric silica composite polymer electrolyte membrane for water management of fuel cells [J]. J. Membr. Sci., 2017, 542: 52
20 SahinA. The development of SPEEK/PVA/TEOS blend membrane for proton exchange membrane fuel cells [J]. Electrochim. Acta, 2018, 271: 127
21 MunavalliB B, KariduraganavarM Y. Development of novel sulfonic acid functionalized zeolites incorporated composite proton exchange membranes for fuel cell application [J]. Electrochim. Acta, 2019, 296: 294
22 LiuC, FengS, ZhuangZ, et al. Towards basic ionic liquid-based hybrid membranes as hydroxide-conducting electrolytes under low humidity conditions [J]. Chem. Commun., 2015, 51: 12629
23 PonomarevaV G, KovalenkoK A, ChupakhinA P, et al. Imparting high proton conductivity to a metal-organic framework material by controlled acid impregnation [J]. J. Am. Chem. Soc., 2012, 134: 15640
24 DybtsevD N, PonomarevaV G, AlievS B, et al. High proton conductivity and spectroscopic investigations of metal-organic framework materials impregnated by strong acids [J]. ACS Appl. Mater. Inter., 2014, 6: 5161
25 LiangX Q, ZhangF, FengW, et al. From metal-organic framework (MOF) to MOF-polymer composite membrane: enhancement of low-humidity proton conductivity [J]. Chem. Sci., 2013, 4: 983
26 RuC Y, LiZ H, ZhaoC J, et al. Enhanced proton conductivity of sulfonated hybrid poly(arylene ether ketone) membranes by incorporating an amino-sulfo bifunctionalized metal-organic framework for direct methanol fuel cells [J]. ACS Appl. Mater. Inter., 2018, 10: 7963
27 NiluroutuN, PichaimuthuK, SarmahS, et al. A copper–trimesic acid metal-organic framework incorporated sulfonated poly(ether ether ketone) based polymer electrolyte membrane for direct methanol fuel cells [J]. New J. Chem., 2018, 42: 16758
28 AtorngitjawatP, KleinR J, RuntJ. Dynamics of sulfonated polystyrene copolymers using broadband dielectric spectroscopy [J]. Macromolecules, 2006. 39(5): 1815
29 GoestenM.G., et al., Sulfation of metal–organic frameworks: opportunities for acid catalysis and proton conductivity [J]. J. Catal., 2011, 281(1): 177
30 HouS L, LuH G, GuY F, et al. Conversion of water-insoluble aluminum sources into metal-organic framework MIL-53(Al) and its adsorptive removal of roxarsone [J]. Chin. J. Mater. Res., 2017, 31(7): 495
30 侯书亮, 卢慧宫, 顾逸凡等. 水不溶性铝源合成金属有机骨架MIL-53(Al)及其对洛克沙胂的吸附 [J]. 材料研究学报, 2017, 31(7): 495)
31 ZhangG, LiJ, WangN, et al. Enhanced flux of polydimethylsiloxane membrane for ethanol permselective pervaporation via incorporation of MIL-53 particles [J]. J. Membr. Sci., 2015, 492: 322
32 ParisaS, MehranJ, SaeedP, et al. Novel proton exchange membranes based on proton conductive sulfonated PAMPS/PSSA-TiO2 hybrid nanoparticles and sulfonated poly (ether ether ketone) for PEMFC [J]. Int. J. Hydrogen Energ., 2019, 44: 3099
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!