|
|
Effect of Zn Content on Exfoliation Corrosion Resistance of Al-Zn-Mg-Cu Alloy Extruded Rod |
Zhenshen YANG1,2,Shengdan LIU1,2,3( ),Jianguo TANG1,2,3,Lingying YE1,2,3 |
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China 2. Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China 3. Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083, China |
|
Cite this article:
Zhenshen YANG, Shengdan LIU, Jianguo TANG, Lingying YE. Effect of Zn Content on Exfoliation Corrosion Resistance of Al-Zn-Mg-Cu Alloy Extruded Rod. Chinese Journal of Materials Research, 2019, 33(8): 579-587.
|
Abstract The effect of Zn content on exfoliation corrosion resistance of extruded rods of Al-Zn-Mg-Cu alloy was investigated by standard exfoliation corrosion (EXCO) immersion test, and polarization curve measurement, optical microscopy (OM), scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). The results show that exfoliation corrosion resistance of the rods decreases with the increase of Zn content (mass fraction,%) from 7.93% to 9.85%, and the exfoliation corrosion rating changes from EA to EC with the maximum corrosion depth increasing from 334 μm to 579 μm. The lower EXCO resistance caused by higher Zn content is mainly attributed to the increased number of coarse second phase in alloys, the decreased size and spacing, as well as the higher Zn and Mg content of η-phase at grain boundaries after aging.
|
Received: 03 January 2019
|
|
Fund: Supported by Foundation:National Key Research and Development Program of China(No. 2016YFB0300901);Shenghua Yuying Project of Central South University(No. 20130603) |
[1] | Zhang X M, Liu S D. Aerocraft aluminum alloys and their materials processing [J]. Materials China, 2013, 32(1): 39 | [1] | 张新明, 刘胜胆. 航空铝合金及其材料加工 [J]. 中国材料进展, 2013, 32(1): 39) | [2] | Zhang X S, Chen Y J, Hu J L. Recent advances in the development of aerospace materials [J]. Prog. Aero. Sci., 2018, 97: 22 | [3] | Liu S D, Chen B, Li C B, et al. Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy [J]. Corros. Sci., 2015, 91: 203 | [4] | Deng Y, Yin Z M, Zhao K, et al. Effects of Sc and Zr microalloying additions and aging time at 120℃ on the corrosion behaviour of an Al-Zn-Mg alloy [J]. Corros. Sci., 2012, 65: 288 | [5] | Xiao T, Lin H Q, Ye L Y, et al. Effect of corrosion conditions on strength and toughness of Al-Zn-Mg aluminum alloys [J]. Chin. J. Nonferrous Met., 2016, 26(7): 1391 | [5] | 肖 涛, 林化强, 叶凌英等. 腐蚀条件对Al-Zn-Mg铝合金强韧性能的影响 [J]. 中国有色金属学报, 2016, 26(7): 1391) | [6] | Liao W B, Liu X Y, Liu S D, et al. Effects of local corrosion on tensile properties of 7055 aluminum alloys after different aging treatments [J]. Chin. J. Nonferrous Met., 2011, 21(8): 1855 | [6] | 廖文博, 刘心宇, 刘胜胆等. 局部腐蚀对不同热处理状态7055铝合金拉伸性能的影响 [J]. 中国有色金属学报, 2011, 21(8): 1855) | [7] | Chen Z Y, Mo Y K, Nie Z R. Effect of Zn content on the microstructure and properties of super-high strength Al-Zn-Mg-Cu alloys [J]. Metall. Mater. Trans. A, 2013, 44(8): 3910 | [8] | Wloka J, Hack T, Virtanen S. Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys [J]. Corros. Sci., 2007, 49(3): 1437 | [9] | Xie J, Meng L C, Chen J H, et al. Behavior of localized corrosion of Al-Zn-Mg-Cu alloys in relation with their Zn and Mg contents [J]. Chin. J. Nonferrous Met., 2017, 27(12): 2473 | [9] | 谢 娟, 孟立春, 陈江华等. Al-Zn-Mg-Cu合金的局部腐蚀行为与Zn、Mg含量的关系 [J]. 中国有色金属学报, 2017, 27(12): 2473) | [10] | Lu X H, Han X L, Du Z W, et al. Effect of microstructure on exfoliation corrosion resistance in an Al-Zn-Mg alloy [J]. Mater. Charact., 2018, 135: 167 | [11] | Andreatta F, Terryn H, De Wit J H W. Corrosion behaviour of different tempers of AA7075 aluminium alloy [J]. Electrochim. Acta, 2004, 49(17-18): 2851 | [12] | Li C B, Liu S D, Wang G W, et al. Effect of cooling rate on exfoliation corrosion of Al-Zn-Mg-Cu alloy thick plate [J]. Chin. J. Mater. Res., 2013, 27(3): 259 | [12] | 李承波, 刘胜胆, 王国玮等. 冷却速率对Al-Zn-Mg-Cu合金厚板剥落腐蚀的影响 [J]. 材料研究学报, 2013, 27(3): 259) | [13] | Li Y X, Chen K H, Huang L P, et al. Effect of copper content on microstructure and properties of super-high strength Al-Zn-Mg-Cu-Zr-Cr-Yb alloy [J]. Mater. Sci. Eng. Powder Metall., 2014, 19(5): 727 | [13] | 黎彦希, 陈康华, 黄兰萍等. 铜含量对Al-Zn-Mg-Cu-Zr-Cr-Yb超强铝合金组织与性能的影响 [J]. 粉末冶金材料科学与工程, 2014, 19(5): 727) | [14] | Li S, Dong H G, Li P, et al. Effect of repetitious non-isothermal heat treatment on corrosion behavior of Al-Zn-Mg alloy [J]. Corros. Sci., 2018, 131: 278 | [15] | Robinson M J. Mathematical modelling of exfoliation corrosion in high strength aluminium alloys [J]. Corros. Sci., 1982, 22(8): 775 | [16] | Liu S D, Li Q, Ye L Y, et al. Effects of pre-stretching on mechanical properties and localized corrosion of 7085 aluminum alloy [J]. J. Cent. South Univ. (Sci. Technol.), 2018, 49(9): 2152 | [16] | 刘胜胆, 李 群, 叶凌英等. 预拉伸对7085铝合金力学及局部腐蚀性能的影响 [J]. 中南大学学报(自然科学版), 2018, 49(9): 2152) | [17] | El-Amoush A S. Intergranular corrosion behavior of the 7075-T6 aluminum alloy under different annealing conditions [J]. Mater. Chem. Phys., 2011, 126(3): 607 | [18] | Birbilis N, Buchheit R G. Electrochemical characteristics of intermetallic phases in aluminum alloys an experimental survey and discussion [J]. J. Electrochem. Soc., 2005, 152(4): B140 | [19] | Sun X Y, Zhang B, Lin H Q, et al. Atom probe tomographic study of elemental segregation at grain boundaries for a peak-aged Al-Zn-Mg alloy [J]. Corros. Sci., 2014, 79: 1 | [20] | Zhao H, De Geuser F, da Silva A K, et al. Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2018, 156: 318 | [21] | Kamp N, Sullivan A, Tomasi R, et al. Modelling of heterogeneous precipitate distribution evolution during friction stir welding process [J]. Acta mater., 2006, 54(8): 2003 | [22] | Du Y, Chang Y A, Huang B Y, et al. Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation [J]. Mater. Sci. Eng. A, 2003, 363(1-2): 140 | [23] | Fujita T, Horita Z, Langdon T G. Using grain boundary engineering to evaluate the diffusion characteristics in ultrafine-grained Al-Mg and Al-Zn alloys [J]. Mater. Sci. Eng. A, 2004, 371(1-2): 241 | [24] | Wang X, Wang J, Fu C. Characterization of pitting corrosion of 7A60 aluminum alloy by EN and EIS techniques [J]. Trans. Nonferrous Met. Soc. China, 2014, 24(12): 3907 | [25] | Sun Y W, Pan Q L, Sun Y Q, et al. Localized corrosion behavior associated with Al7Cu2Fe intermetallic in Al-Zn-Mg-Cu-Zr alloy [J]. J. Alloys Compd., 2019, 783: 329 | [26] | Knight S P, Birbilis N, Muddle B C, et al. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys [J]. Corros. Sci., 2010, 52(12): 4073 | [27] | Li J F, Jia Z Q, Li C X, et al. Exfoliation corrosion of 7150 Al alloy with various tempers and its electrochemical impedance spectroscopy in EXCO solution [J]. Mater. Corros., 2009, 60(6): 407 | [28] | Dinh T V, Sun W W, Yue Y, et al. On the miniaturised sacrificial protection achieved by surface precipitation in aluminium alloys [J]. Corros. Sci., 2018, 145: 67 | [29] | Song M, Chen K H. Effects of the enhanced heat treatment on the mechanical properties and stress corrosion behavior of an Al-Zn-Mg alloy [J]. J. Mater. Sci., 2008, 43(15): 5265 | [30] | Muller I L, Galvele J R. Pitting potential of high purity binary aluminium alloys—I. Al-Cu alloys. Pitting and intergranular corrosion [J]. Corros. Sci., 1977, 17(3): 179 | [31] | Song R G, Dietzel W, Zhang B J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2004, 52(16): 4727 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|