Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (8): 579-587    DOI: 10.11901/1005.3093.2018.740
ARTICLES Current Issue | Archive | Adv Search |
Effect of Zn Content on Exfoliation Corrosion Resistance of Al-Zn-Mg-Cu Alloy Extruded Rod
Zhenshen YANG1,2,Shengdan LIU1,2,3(),Jianguo TANG1,2,3,Lingying YE1,2,3
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China
2. Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
3. Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083, China
Cite this article: 

Zhenshen YANG, Shengdan LIU, Jianguo TANG, Lingying YE. Effect of Zn Content on Exfoliation Corrosion Resistance of Al-Zn-Mg-Cu Alloy Extruded Rod. Chinese Journal of Materials Research, 2019, 33(8): 579-587.

Download:  HTML  PDF(14602KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Zn content on exfoliation corrosion resistance of extruded rods of Al-Zn-Mg-Cu alloy was investigated by standard exfoliation corrosion (EXCO) immersion test, and polarization curve measurement, optical microscopy (OM), scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). The results show that exfoliation corrosion resistance of the rods decreases with the increase of Zn content (mass fraction,%) from 7.93% to 9.85%, and the exfoliation corrosion rating changes from EA to EC with the maximum corrosion depth increasing from 334 μm to 579 μm. The lower EXCO resistance caused by higher Zn content is mainly attributed to the increased number of coarse second phase in alloys, the decreased size and spacing, as well as the higher Zn and Mg content of η-phase at grain boundaries after aging.

Key words:  metallic materials      Al-Zn-Mg-Cu alloy      exfoliation corrosion      Zn content      grain boundary η phase     
Received:  03 January 2019     
ZTFLH:  TG146  
Fund: Supported by Foundation:National Key Research and Development Program of China(No. 2016YFB0300901);Shenghua Yuying Project of Central South University(No. 20130603)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.740     OR     https://www.cjmr.org/EN/Y2019/V33/I8/579

AlloysZnMgCuZrFeSiAl
1#8.0(7.93)3.2(3.30)2.2(2.19)0.14(0.15)<0.12<0.10Bal.
2#9.0(8.66)3.2(3.13)2.2(2.31)0.14(0.14)<0.12<0.10Bal.
3#10.0(9.85)3.2(3.25)2.2(2.27)0.14(0.13)<0.12<0.10Bal.
Table 1  Chemical composition of the studied aluminum alloy extruded rods (%, mass fraction)
Fig.1  Digital photos of the surfaces of (a, a') 1#, (b, b') 2# and (c, c') 3# alloys after immersion in EXCO solution for (a, b, c) 12 h and (a', b', c') 48 h (ED: Extrusion direction)
Fig.2  Optical micrographs of the cross sections of (a) 1#, (b) 2# and (c) 3# alloys after immersion in EXCO solution for 48 h, (d) the magnified image of solid line box region in Fig.2c
Fig.3  The corrosion rating of the three alloys after immersion for different time (a) and the maximum corrosion depth of the three alloys after immersion for 48 h (b)
Fig.4  Polarization curves of the three alloys
Alloys1#2#3#
Ecorr,SCE/mV-787±4-794±3-802±6
Icorr/μA·cm-22.553±0.0785.104±0.0946.958±0.116
Table 2  The electrochemical parameters of the three alloys
Fig.5  SEM images of (a) 1#, (b) 2# and (c) 3# alloys; (d) the magnified image of solid line box region in Fig.5c
Fig.6  STEM-HAADF images of grain boundaries of (a) 1# alloy, (b) 2# alloy and (c) 3# alloy
Fig.7  The average length and spacing of grain boundary particles (GBPs) and the width of PFZs in the three alloys (a) and (b) the average content of Zn, Mg and Cu elements in GBPs
Fig.8  SEM images of 2# alloy immersed in EXCO solution for (a) 0 min, (b) 20 min and (c) 80 min
ParticlesImmersion time/minElements (%, atomic fraction)
ZnMgCuFeNaAl
A02.510.143.7013.16-80.49
202.390.253.9913.03-80.34
803.730.986.8120.39-68.09
B014.8724.0110.64--50.48
204.644.0724.47-5.4361.39
805.142.5619.16--73.14
C014.6419.5010.45--55.41
205.462.610.91--91.02
804.213.380.82--91.59
Table 3  The changes of chemical composition of second phase particles in Fig.8 during immersion
[1] Zhang X M, Liu S D. Aerocraft aluminum alloys and their materials processing [J]. Materials China, 2013, 32(1): 39
[1] 张新明, 刘胜胆. 航空铝合金及其材料加工 [J]. 中国材料进展, 2013, 32(1): 39)
[2] Zhang X S, Chen Y J, Hu J L. Recent advances in the development of aerospace materials [J]. Prog. Aero. Sci., 2018, 97: 22
[3] Liu S D, Chen B, Li C B, et al. Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy [J]. Corros. Sci., 2015, 91: 203
[4] Deng Y, Yin Z M, Zhao K, et al. Effects of Sc and Zr microalloying additions and aging time at 120℃ on the corrosion behaviour of an Al-Zn-Mg alloy [J]. Corros. Sci., 2012, 65: 288
[5] Xiao T, Lin H Q, Ye L Y, et al. Effect of corrosion conditions on strength and toughness of Al-Zn-Mg aluminum alloys [J]. Chin. J. Nonferrous Met., 2016, 26(7): 1391
[5] 肖 涛, 林化强, 叶凌英等. 腐蚀条件对Al-Zn-Mg铝合金强韧性能的影响 [J]. 中国有色金属学报, 2016, 26(7): 1391)
[6] Liao W B, Liu X Y, Liu S D, et al. Effects of local corrosion on tensile properties of 7055 aluminum alloys after different aging treatments [J]. Chin. J. Nonferrous Met., 2011, 21(8): 1855
[6] 廖文博, 刘心宇, 刘胜胆等. 局部腐蚀对不同热处理状态7055铝合金拉伸性能的影响 [J]. 中国有色金属学报, 2011, 21(8): 1855)
[7] Chen Z Y, Mo Y K, Nie Z R. Effect of Zn content on the microstructure and properties of super-high strength Al-Zn-Mg-Cu alloys [J]. Metall. Mater. Trans. A, 2013, 44(8): 3910
[8] Wloka J, Hack T, Virtanen S. Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys [J]. Corros. Sci., 2007, 49(3): 1437
[9] Xie J, Meng L C, Chen J H, et al. Behavior of localized corrosion of Al-Zn-Mg-Cu alloys in relation with their Zn and Mg contents [J]. Chin. J. Nonferrous Met., 2017, 27(12): 2473
[9] 谢 娟, 孟立春, 陈江华等. Al-Zn-Mg-Cu合金的局部腐蚀行为与Zn、Mg含量的关系 [J]. 中国有色金属学报, 2017, 27(12): 2473)
[10] Lu X H, Han X L, Du Z W, et al. Effect of microstructure on exfoliation corrosion resistance in an Al-Zn-Mg alloy [J]. Mater. Charact., 2018, 135: 167
[11] Andreatta F, Terryn H, De Wit J H W. Corrosion behaviour of different tempers of AA7075 aluminium alloy [J]. Electrochim. Acta, 2004, 49(17-18): 2851
[12] Li C B, Liu S D, Wang G W, et al. Effect of cooling rate on exfoliation corrosion of Al-Zn-Mg-Cu alloy thick plate [J]. Chin. J. Mater. Res., 2013, 27(3): 259
[12] 李承波, 刘胜胆, 王国玮等. 冷却速率对Al-Zn-Mg-Cu合金厚板剥落腐蚀的影响 [J]. 材料研究学报, 2013, 27(3): 259)
[13] Li Y X, Chen K H, Huang L P, et al. Effect of copper content on microstructure and properties of super-high strength Al-Zn-Mg-Cu-Zr-Cr-Yb alloy [J]. Mater. Sci. Eng. Powder Metall., 2014, 19(5): 727
[13] 黎彦希, 陈康华, 黄兰萍等. 铜含量对Al-Zn-Mg-Cu-Zr-Cr-Yb超强铝合金组织与性能的影响 [J]. 粉末冶金材料科学与工程, 2014, 19(5): 727)
[14] Li S, Dong H G, Li P, et al. Effect of repetitious non-isothermal heat treatment on corrosion behavior of Al-Zn-Mg alloy [J]. Corros. Sci., 2018, 131: 278
[15] Robinson M J. Mathematical modelling of exfoliation corrosion in high strength aluminium alloys [J]. Corros. Sci., 1982, 22(8): 775
[16] Liu S D, Li Q, Ye L Y, et al. Effects of pre-stretching on mechanical properties and localized corrosion of 7085 aluminum alloy [J]. J. Cent. South Univ. (Sci. Technol.), 2018, 49(9): 2152
[16] 刘胜胆, 李 群, 叶凌英等. 预拉伸对7085铝合金力学及局部腐蚀性能的影响 [J]. 中南大学学报(自然科学版), 2018, 49(9): 2152)
[17] El-Amoush A S. Intergranular corrosion behavior of the 7075-T6 aluminum alloy under different annealing conditions [J]. Mater. Chem. Phys., 2011, 126(3): 607
[18] Birbilis N, Buchheit R G. Electrochemical characteristics of intermetallic phases in aluminum alloys an experimental survey and discussion [J]. J. Electrochem. Soc., 2005, 152(4): B140
[19] Sun X Y, Zhang B, Lin H Q, et al. Atom probe tomographic study of elemental segregation at grain boundaries for a peak-aged Al-Zn-Mg alloy [J]. Corros. Sci., 2014, 79: 1
[20] Zhao H, De Geuser F, da Silva A K, et al. Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2018, 156: 318
[21] Kamp N, Sullivan A, Tomasi R, et al. Modelling of heterogeneous precipitate distribution evolution during friction stir welding process [J]. Acta mater., 2006, 54(8): 2003
[22] Du Y, Chang Y A, Huang B Y, et al. Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation [J]. Mater. Sci. Eng. A, 2003, 363(1-2): 140
[23] Fujita T, Horita Z, Langdon T G. Using grain boundary engineering to evaluate the diffusion characteristics in ultrafine-grained Al-Mg and Al-Zn alloys [J]. Mater. Sci. Eng. A, 2004, 371(1-2): 241
[24] Wang X, Wang J, Fu C. Characterization of pitting corrosion of 7A60 aluminum alloy by EN and EIS techniques [J]. Trans. Nonferrous Met. Soc. China, 2014, 24(12): 3907
[25] Sun Y W, Pan Q L, Sun Y Q, et al. Localized corrosion behavior associated with Al7Cu2Fe intermetallic in Al-Zn-Mg-Cu-Zr alloy [J]. J. Alloys Compd., 2019, 783: 329
[26] Knight S P, Birbilis N, Muddle B C, et al. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys [J]. Corros. Sci., 2010, 52(12): 4073
[27] Li J F, Jia Z Q, Li C X, et al. Exfoliation corrosion of 7150 Al alloy with various tempers and its electrochemical impedance spectroscopy in EXCO solution [J]. Mater. Corros., 2009, 60(6): 407
[28] Dinh T V, Sun W W, Yue Y, et al. On the miniaturised sacrificial protection achieved by surface precipitation in aluminium alloys [J]. Corros. Sci., 2018, 145: 67
[29] Song M, Chen K H. Effects of the enhanced heat treatment on the mechanical properties and stress corrosion behavior of an Al-Zn-Mg alloy [J]. J. Mater. Sci., 2008, 43(15): 5265
[30] Muller I L, Galvele J R. Pitting potential of high purity binary aluminium alloys—I. Al-Cu alloys. Pitting and intergranular corrosion [J]. Corros. Sci., 1977, 17(3): 179
[31] Song R G, Dietzel W, Zhang B J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2004, 52(16): 4727
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!