Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (8): 572-578    DOI: 10.11901/1005.3093.2018.742
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of TiVNbTa Refractory High-Entropy Alloy Prepared by Powder Metallurgy
Nan GAO1,2,Yan LONG1(),Haiyan PENG1,3,Weihua ZHANG1,Liang PENG1
1. Guangdong Provincial Key Laboratory for Processing and Forming of Advanced Metallic Materials, Sourth China University of Technology, Guangzhou 510640,China
2. China (Wuhan) Intellectual Property Protection Center, Wuhan 430023,China
3. Guangdong Polytechnic Normal University,Guangzhou 510635,China
Cite this article: 

Nan GAO, Yan LONG, Haiyan PENG, Weihua ZHANG, Liang PENG. Microstructure and Mechanical Properties of TiVNbTa Refractory High-Entropy Alloy Prepared by Powder Metallurgy. Chinese Journal of Materials Research, 2019, 33(8): 572-578.

Download:  HTML  PDF(11404KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The TiVNbTa refractory high-entropy alloy (HEA) was fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). The mechanically alloying process, phase composition and microstructure as well as the effect of sintering temperature, O- and N-content on the mechanical properties of the alloy were studied. The mechanically alloyed powders present a single BCC crystal structure, while the spark plasma sintered alloy composed of a FCC matrix with precipitated phases of TiN, TiC and TiO. The alloy sintered at 1100°C performed outstanding mechanical properties with compressive yield strength of 1506 MPa and plastic strain of 33.2%, respectively. As sintering temperature increased, the alloy fracture mechanism basically transformed from quasi-brittle fracture to ductile fracture, and finally to brittle fracture. The increase of O- and N-content had little effect on the strength of the alloy, but negative effect obviously on its plasticity.

Key words:  metallic materials      refractory high-entropy alloys      mechanically alloying      spark plasma sintering      microstructure      mechanical properties     
Received:  04 January 2019     
ZTFLH:  TG146  
Fund: Supported by the Key Science and Technology Project of Guangdong Province(No. 2015A010105011)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.742     OR     https://www.cjmr.org/EN/Y2019/V33/I8/572

Fig.1  XRD patterns of TiVNbTa alloy powders with different milling time
Fig.2  XRD patterns of TiVNbTa alloy sintered at different temperature
Fig.3  SEM Backscattering Morphology of TiVNbTa alloy sintered at 1100℃
Fig.4  TEM bright-field images of the TiVNbTa alloy, inset: SAED pattern corresponding to a BCC phase along [001] zone axis; SAED pattern corresponding to a FCC phase along [011] zone axis
RegionTiVNbTaCNO
BCC19.728.627.123.8-0.8-
FCC48.71.31.20.614.323.510.4
Table 1  Chemical composition analysis results of bulk TiV-NbTa alloy by EDS/TEM (atomic fraction, %)
Fig.5  Compressive engineering stress-strain curves of the bulk TiVNbTa HEAs sintered at different temperatures
Fig.6  Fracture morphologies of bulk TiVNbTa sintered at different temperatures: (a, b) 900℃; (c) 1000℃; (d) 1100℃; (e)1200℃; (f) 1300℃
ElementsON
Powder A2.60.5
Powder B3.61.0
HEA12.40.5
HEA22.71.1
Table 2  The O, N content results of TiVNbTa alloy(atomic fraction, %)
Fig.7  Metallographic microstructures of HEA1: (a) 1100℃; (b) 1200℃; (c) 1300℃ and HEA2: (d) 1100℃; (e) 1200℃; (f)1300℃
Fig.8  Comparison of mechanical properties of HEA1 and HEA2 (a) yield strengths;(b) plastic strains
[1] Yeh J W. High-entropy multi-element alloys [P]. US20020159914.
[2] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6(5): 299
[3] Zhang L S, Ma G L, Fu L C, et al. Recent progress in high-entropy alloys[ J]. Adv. Mater. Res., 2013, 631(3): 227
[4] Ren M X, Li B S, Fu H Z. Formation condition of solid solution type high-entropy alloy [J]. T. Nonferr. Metal. Soc., 2013, 23(4): 991
[5] Yang X, Zhang Y, Liaw P K. Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys [J]. Procedia Engineering, 2012, 36(6): 292
[6] Zhang L S, Ma G L, Fu L C, et al. Recent Progress in High-Entropy Alloys [J]. Adv. Mater. Res., 2013, 631(3): 227
[7] Hsu C Y, Yeh J W, Chen S K, et al. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition [J]. Metall. Mater. Trans. A, 2004, 35(5): 1465
[8] Pickering E J, Jones N G. High-entropy alloys: a critical assessment of their founding principles and future prospects [J]. Int. Mater. Rev., 2016, 61(3): 183
[9] Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61(8): 1
[10] Bhadeshia H K D H. Editorial: High entropy alloys [J]. Mater. Sci. Tech-lond., 2015, 31(1): 1139
[11] Gao M C, Yeh J W, Liaw P K, Zhang Y. High-Entropy Alloys [M]. Switzerland: Springer International Publishing, 2016
[12] Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta. Mater., 2017, 122: 448
[13] Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18(9): 1758
[14] Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19(5): 698
[15] Senkov O N, Semiatin S L. Microstructure and properties of a refractory high-entropy alloy after cold working [J]. J. Alloys. Compd., 2015, 649(1): 1110
[16] Senkov O N, Senkova S V, Woodward C, et al. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis [J]. Acta. Mater., 2013, 61(5): 1545
[17] Liu C M, Wang H M, Zhang S Q, et al. Microstructure and oxidation behavior of new refractory high entropy alloys [J]. J. Alloys. Compd., 2014, 583(3): 162
[18] Lin C M, Juan C C, Chang C H, et al. Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys [J]. J. Alloys. Compd., 2015, 624(5): 100
[19] Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy [J]. Mater. Lett., 2015, 142: 153
[20] Wang J, Huang W G. Microstructure and mechanical properties of CrMoVNbFex high-entropy alloys [J]. Chinese Journal of Material Research, 2016, 30(8): 609
[20] 王 江, 黄维刚. CrMoVNbFex高熵合金微观组织结构与力学性能 [J]. 材料研究学报, 2016, 30(8): 609)
[21] Yavari A R, Desr? P J, Benameur T. Mechanically driven alloying of immiscible elements [J]. Phys. Rev. Lett., 1992, 68(14): 2235
[22] Huang J Y, Yu Y D, Wu Y K, et al. Microstructure and nanoscale composition analysis of the mechanical alloying of FexCu100-x (x=16, 6) [J]. Acta. Mater., 1997, 45(1): 113
[23] Macdonald B E, Fu Z, Zheng B, et al. Recent progress in high entropy alloy research [J]. JOM, 2017, 69(10): 1
[24] Nagasaki Seizo, Hirabayashi Makoto, Liu A S. Binary Alloy Phase-diagrams [M]. Beijing: Metallurgical Industry Press, 2004
[24] 长崎诚三, 平林真, 刘安生. 二元合金状态图集 [M]. 北京: 冶金工业出版社, 2004
[25] Li X R, Shuai M B. Effect of oxygen on the microstructure and mechanical properties of 95W-3.15Ni-1.35Fe-0.5Co alloy [J]. Rare Metal and Cemented Carbides, 2005, 33(3): 12
[25] 李先容, 帅茂兵. 氧对95W-315Ni-135Fe-0.5Co合金组织及力学性能的影响 [J]. 稀有金属与硬质合金, 2005, 33(3): 12
[26] Qi Y X, Jiang C. Sam and xps analysis of manufacturing defects in 95W-Ni-Fe alloy [J]. Ordn. Mater. Sci. Eng., 1997, 20(5): 36
[26] 齐芸馨, 姜 春. 95W-Ni-Fe合金工艺缺陷的SAM和XPS分析 [J]. 兵器材料科学与工程, 1997, 20(5): 36
[27] Gao Z Z, Kang Z J, Zheng Q. Effect of oxygen content on structure and properties of W-Ni-Fe heavy alloy [J]. Chinese Journal of Rare Metals, 1999, 23(2): 81
[27] 高兆祖, 康志君, 郑 强. 氧含量对W-Ni-Fe合金组织性能的影响 [J]. 稀有金属, 1999, 23(2): 81
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[13] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
No Suggested Reading articles found!