Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (5): 379-386    DOI: 10.11901/1005.3093.2018.562
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Porous Carbon Fibers with Different Carbon Sources and Their Adsorption Properties
Xiuli HU,Xiaxi YAO,Wenjun ZHANG,Wangjin JI,Jiacheng MU,Yuwen YONG,Xuhong WANG()
School of Chemistry & Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
Cite this article: 

Xiuli HU,Xiaxi YAO,Wenjun ZHANG,Wangjin JI,Jiacheng MU,Yuwen YONG,Xuhong WANG. Preparation of Porous Carbon Fibers with Different Carbon Sources and Their Adsorption Properties. Chinese Journal of Materials Research, 2019, 33(5): 379-386.

Download:  HTML  PDF(2248KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three polymer fibers were prepared via electrospinning method with polyacrylonitrile (PAN), polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) respectively as raw materials, and then carbon fibers with porous morphology were obtained by carbonizing the above three polymer fibers in nitrogen gas. The physical-chemical properties of the obtained carbon fibers were characterized by means of X-ray diffractometer, IR spectroscopy, thermal analysis and N2 adsorption-desorption isotherm. The results show that the PAN-based carbon fiber has the largest specific surface area of 113.5 m2/g and the maximum adsorption capacity of about 560.2 g/kg on Congo red; Meanwhile, the effect of temperature and pH values on the adsorption properties of carbon fibers was also investigated. The results demonstrate that the higher the temperature is, the faster the adsorption rate is, while there is no significant change in the adsorption capacity; With the varying pH value of Congo red containing solutions, the three carbon fibers presented different adsorption performance: namely, in acidic solutions the PVA-based carbon fibers can maintain a high adsorption capacity, while the behavior of the PAN-based carbon fiber is just the opposite, however, the varying pH value of the Congo red solution had little effect on the adsorption activity of the PVP-based carbon fiber.

Key words:  inorganic non-metallic materials      carbon fiber      electrospinning method      adsorption      temperatures      pH values     
Received:  18 September 2018     
ZTFLH:  TQ343  
Fund: National Natural Science Foundation of China(51702022, 51702023);Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(17KJB430001)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.562     OR     https://www.cjmr.org/EN/Y2019/V33/I5/379

Fig.1  IR spectrum of the polymer fibers
Table 1  Physical and chemical properties of polymer fibers
Fig.2  TG analysis of polymer fibers
Fig.3  N2 adsorption-desorption (a), pore size distri-bution (b) and (c) specific surface area curves of obtained carbon fibers
Fig.4  XRD patterns of different based carbon fibers
Fig.5  Relationship between adsorption time and adsorption capacity
Adsorption time/h PVA PVP PAN
7 21.4 24.9 32.1
19 22.4 34.6 48.0
32 22.9 38.0 54.5
69 24.0 39.2 55.6
Table 2  Congo red dye removal rate in each period of obtained carbon fibers (%)
Fig.6  Quasi-first order adsorption kinetics (a), quasi-second order adsorption kinetics (b) and internal adsorption kinetics (c) of obtained carbon fibers
Kinetic model PVA PVP PAN
First-order kinetic q e/g·kg-1 (test) 240.13 392.10 556.09
q e/g·kg-1 (model) 145.22 287.51 231.42
K 1/h-1 0.5120 0.0462 0.0515
R 2 0.9591 0.9813 0.9670
Second-order kinetic q e/g·kg-1 (model) 246.12 395.91 561.28
K 2/kg·g-1·h-1 7.21×10-4 8.91×10-4 9.31×10-4
R 2 0.9991 0.9990 0.9998
Table 3  Parameters of different kinetic models
Sample Ci /g·kg-1 K d i /g·kg-1·h1/2
C 1 C 2 K d1 R 1 2 K d2 R 2 2
PVA 2.3 208.1 98 0.9987 4.1 0.9982
PVP 11.4 238.8 89.9 0.9990 26.7 0.9989
PAN 75.8 379.3 119.2 0.9980 13.9 0.9974
Table 4  Kinetic model parameters of internal adsorption
Fig.7  Langmuir adsorption isotherm (a) and Freund-lich adsorption isotherm (b)
Model of adsorption isotherm PVA PVP PAN
Langmuir K L/L·mg-1 0.3465 0.7361 0.8991
q max/g·kg-1 323.55 563.35 991.21
R 2 0.9994 0.9998 0.9998
Freundlich K F/L·mg-1 247.29 401.39 781.84
R 2 0.9821 0.9491 0.9636
Table 5  Model parameters of adsorption isotherm
Fig.8  Effect of the temperature on the adsorption of PVA (a); PVP (b); PAN-based (c) carbon fibers
Fig.9  Effect of pH on the adsorption performance of the obtained carbon fibers
Fig.10  Comparison of the functional groups before and after PAN-based carbon fiber and Congo red adsorption
[1] Deng Q , Wan S , Yao S J , et al . Study on the removal of organic pollutants in water by activated carbon [J]. Guangzhou Chem. Ind., 2015, (13): 114
[1] 邓 倩, 万 爽, 姚诗杰 等 . 活性炭去除水体中有机污染物的研究 [J]. 广州化工. 2015, (13): 114)
[2] Aguiar J E , Silva Jr I J , Lucena S M P , et al . Correlation between PSD and adsorption of anionic dyes with different molecular weigths on activated carbon [J]. Colloid. Surface. A, 2016, 496: 125
[3] Zhao H , Liu X , Xu J , et al . Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes [J]. J. Hazard. Mater., 2016, 310: 235
[4] He J J , Lai M H , Chen H H , et al . Research progress of wastewater filtration materials prepared by electrospinning [J]. Synth. Fiber in China, 2011, 40(12): 18
[4] 何剑江, 赖明河, 陈海宏 等 . 静电纺丝制备污水过滤材料的研究进展 [J].合成纤维, 2011, 40(12): 18)
[5] Hassani A , Vafaei F , Khataee A R , et al . Adsorption of a cationic dye from aqueous solution using Turkish lignite: kinetic, isotherm, thermodynamic studies and neural network modeling [J]. J. Ind. Eng. Chem., 2014, 20: 2615
[6] Chen T , Ballesteros Jr F C , Lu M , et al . Using activated clay for adsorption of sulfone compounds in diesel [J]. J. Clean Prod., 2016, 124: 378
[7] Jin P B . Zeolitization of fly ash and their applications in treating wastewater [D]. Zhenjiang: Jiangsu Univ., 2007
[7] 靳朋勃 . 粉煤灰沸石化及其处理废水的试验研究 [D]. 镇江: 江苏大学, 2007
[8] Mao P , Qi B , Yang Y , et al . AgII doped MIL-101 and its adsorption of iodine with high speed in solution [J]. J. Solid State Chem., 2016, 237: 274
[9] Zhang Y . Adsorption of congo red and Cr (VI) by chitosan composite adsorbent [D]. Tianjin: Tianjin Polytech. Univ., 2012
[9] 张 艳 . 壳聚糖复合吸附剂吸附刚果红和Cr(Ⅵ)的研究 [D]. 天津: 天津工业大学, 2012
[10] Wang Y . Study of biosorption of methylene blue and congo red from the aqueous solutions by cereal chaff and Phoenix tree’s leaves [D]. Zhengzhou: Zhengzhou Univ., 2007
[10] 王元凤 . 谷壳和梧桐树叶对水体中亚甲基蓝和刚果红的吸附研究 [D]. 郑州: 郑州大学, 2007
[11] Zhang F , Wang M M , Gao Z Y , et al . Research on adsorption of congo red by chitosan/talcum composite in aqueous solution [J]. J. China West Normal Univ. (Nat. Sci.), 2013, 34(3): 218
[11] 张 凤, 王慢慢, 高志燕 等 . 壳聚糖/滑石粉复合物对水溶液中刚果红的吸附研究 [J].华西师范大学学报(自然科学版), 2013, 34 (3): 218)
[12] Li H , Wang W J , Ren X F , et al . Removal of congo red from aqueous solution onto organo-modified attapulgite clay [J] J.Hexi Univ., 2012, 28(2): 83
[12] 李 鹤, 王文娟, 任学锋 等 . 有机化凹凸棒对刚果红的吸附性能 [J]. 河西学院学报. 2012, 28(2): 83)
[13] Xiang X Y , You T Z , Yuan Q L , al et , Study on adsorption of dyeing wastewater by modified peanut shells [J]. Appl. Chem. Ind. 2014, 43(3): 460
[13] 项小燕, 游腾钟, 袁秋兰 等 . 羧基酯化改性花生壳对染料废水的吸附 [J]. 应用化工, 2014, 43(3): 460)
[14] Chang H Y , Xiong J . Preparation of porous hollow polyacrylonitrile ultrafine fibers by coaxial electrospinning [J] J. Text. Res., 2012, 33(11): 6
[14] 常怀云, 熊 杰 . 同轴静电纺丝制备聚丙烯腈多孔中空超细纤维 [J]. 纺织学报, 2012, 33(11): 6)
[15] Wang L Y , Yang C L , Lv Y G , et al . Effect of electrochemical treatment on surface characters of PAN-based carbon fibers [J]. Aerosp. Mater. Technol., 2010, 40(3): 51
[15] 王力勇, 杨常玲, 吕永根 等 . 电化学处理对PAN基碳纤维表面特征的影响 [J]. 宇航材料工艺, 2010, 40(3): 51)
[16] Yan T, Preparation and adsorption properties of new type cotton fiber based-adsorbents [D]. Soochow: Soochow Univ., 2014
[16] 闫 腾 . 新型棉纤维基吸附剂的制备及其性能研究 [D]. 苏州: 苏州大学, 2014
[17] Yang Y R , Yan G M , Liu L . Micropore structure formation and transformation of PAN-based carbon fiber during preparation [J]. Mater. Rev., 2014, 28(9): 74
[17] 杨玉蓉, 闫国民, 刘 立 等 . PAN基碳纤维制备过程中微孔结构的形成与转变 [J]. 材料导报B: 研究篇, 2014, 28(9): 74)
[18] Wang Y . Adsorption of methyl violet on dye wastewater by bentonite: an adsorption model [J]. Archit. Eng. Technol. Des., 2015(17): 1856
[18] 王 炎 . 膨润土对染料废水中的甲基紫吸附研究: 吸附模型探讨 [J]. 建筑工程技术与设计, 2015, (17): 1856)
[19] Tu T , Yang J Z , Zhu M H , et al . The research on adsorption characteristics of activated carbon fiber to aniline solution [J]. Hi-Tech Fiber Appl., 2014, 39(6): 62
[19] 涂 腾, 杨建忠, 朱明辉 等 . 活性碳纤维对苯胺的吸附性能研究 [J]. 高科技纤维与应用, 2014, 39(6): 62)
[20] Ouyang S B , Xu S P , Zhang J J , et al . Study on N2/CH4 adsorption property in the adsorbents [J]. Chem. Ind. Eng. Prog., 2014, 33(10): 2546
[20] 欧阳少波, 徐绍平, 张俊杰 等 . N2/CH4在吸附剂上的动态吸附特性 [J]. 化工进展, 2014, 33(10): 2546)
[21] Ip A W M , Barford J P , Mckay G . A comparative study on the kinetics and mechanisms of removal of reactive black 5 by adsorption onto activated carbons and bone char [J]. Chem Eng. J., 2010, 157(2-3): 434
[22] Ma H F , Han Q J , Li W , et al . Research on the adsorption of Cr(Ⅵ) with waste jasmine tea dust [J]. Sci. Technol. Eng., 2012, 12(25): 6554
[22] 马宏飞, 韩秋菊, 李薇 等 . 废茉莉花茶渣对Cr(Ⅵ)的吸附研究 [J]. 科学技术与工程, 2012, 12(25): 6554)
[23] Zhang Y , Chen P . Kinetic characteristics of mercury adsorption by chitosan manganese complex [J]. Educ. Tech. Forum, 2015, (1): 246
[23] 张 娅, 陈 鹏 . 壳聚糖-锰复合物吸附汞的动力学特性研究 [J].教育教学论坛, 2015, (1): 246)
[24] Yan T G . Preparation of two magnetic materials and the adsorption performance of dyes [D]. Harbin: Northeast Forest. Univ., 2014
[24] 颜廷国 . 两种磁性吸附材料制备及其染料吸附性能研究 [D]. 哈尔滨: 东北林业大学, 2014
[25] Chen G H . Adsorption characteristics of methylene blue and congo red on fir sawdust [D]. Nanning: Guangxi Univ., 2014
[25] 陈光浩 . 杉木木屑对水中亚甲基蓝及刚果红的吸附性能研究 [D]. 南宁: 广西大学, 2014
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] QI Yunchao, FANG Guodong, ZHOU Zhengong, LIANG Jun. In-plane Tensile Strength for Needle-punched Composites Prepared by Different Needling Processes[J]. 材料研究学报, 2023, 37(1): 21-28.
[12] ZHANG Peng, HUANG Dong, ZHANG Fuquan, YE Chong, WU Xiao, WU Huang. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage[J]. 材料研究学报, 2022, 36(8): 579-590.
[13] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] YANG Qin, WANG Zhen, FANG Chunjuan, WANG Ruodi, GAO Dahang. Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties[J]. 材料研究学报, 2022, 36(8): 628-634.
No Suggested Reading articles found!