Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (2): 124-130    DOI: 10.11901/1005.3093.2018.395
Current Issue | Archive | Adv Search |
Room-temperature Magnetocaloric Effect and Magneto-resistance Effect of Co0.525Fe0.475MnP Compound
Naikun SUN(),Dehan ZHONG,Zengxin REN,Yang ZHANG,Xiaoyun LIU()
School of Science, Shenyang Ligong University, Shenyang 110159, China
Cite this article: 

Naikun SUN,Dehan ZHONG,Zengxin REN,Yang ZHANG,Xiaoyun LIU. Room-temperature Magnetocaloric Effect and Magneto-resistance Effect of Co0.525Fe0.475MnP Compound. Chinese Journal of Materials Research, 2019, 33(2): 124-130.

Download:  HTML  PDF(4913KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Co0.525Fe0.475MnP compound of single-phase with Co2P-crystallographic structure was prepared by a multi-step solid sintering process. Co0.525Fe0.475MnP exhibits two successive magnetic transitions with the increasing temperature: a first-order magnetic phase transition from the antiferromagnetic (AF) to the ferromagnetic (FM) state at 285 K, and a second-order magnetic phase transition to the paramagnetic (PM) state at 375 K. The maximum value of magnetic-entropy change for a field change from 0 to 5 T is 1.1 J/(kg?K) at 303 K and -2.0 J/(kg?K) at 383 K. With the decreasing temperature, a minimum resistivity emerges near the TFM-AF originating from the competition between antiferromagnetism and ferromagnetism. The compound experiences a metal-insulator transition at 35 K, which can be ascribed to spin disorder due to the Fe substitution for Co. The value of maximum magnetoresistance ratio is -2.5% at 200 K in an external magnetic field of 5 T. Magnetoresistance value decreases rapidly above antiferromagnetic temperature, confirming that the magnetoresistance originates from the influence of external magnetic field on the antiferromagnetic state.

Key words:  metallic materials      magnetocaloric effect      magneto-resistance effect      metal-insulator transition      first-order phase transition     
Received:  18 June 2018     
ZTFLH:  TM271.4  
Fund: Supported by National Natural Science Foundation of China(51771197);Opening Foundation Key Laboratory of Laser and Optical Technology of Liaoning Province(4771004kfs49)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.395     OR     https://www.cjmr.org/EN/Y2019/V33/I2/124

Fig.1  X-ray diffraction pattern of the Co0.525Fe0.475MnP compound at room temperature
xa/nmb/nmc/nmV/nm3TAF-FM/KTC/K
0.250.594560.352580.67397141.2843180[24]480[25]
0.350.594700.353390.67403141.6548218[24]450[25]
0.450.593910.353430.67278141.2203280[24]385[25]
0.4750.594490.353830.67334141.6360285375
Table 1  Lattice parameters, TAF-FM and TC of Co1-xFexMnP compounds
Fig.2  SEM images of Co0.525Fe0.475 MnP compound (a) low magnification, (b) high magnification
Fig.3  Temperature dependence of the magnetization of Co0.525Fe0.475MnP compound measured in ZFC and FC processes at 0.1 T. (The inset shows the first derivative of the magnetization)
Fig.4  Curves of isothermal magnetization of Co0.525Fe0.475MnP at temperatures near (a) TAF-FM (b) TC (The insets are Arrott curves at temperatures near (a) TAF-FM (b) TC)
Fig.5  Temperature dependence of magnetic-entropy of Co0.525Fe0.475MnP compound
Fig.5  Co0.525Fe0.475MnP compound: (a) temperature dependence of the resistivity (the inset is dρ/dT curve at 5 T), (b) temperature dependence of the MR at 5 T
[1] Pecharsky V K, Gschneidner Jr K A. Magnetocaloric effect and magnetic refrigeration [J]. Journal of Magnetism and Magnetic Materials, 1999, 200(1): 44
[2] Gao B B, Zhong X C, Zheng Z G, et al. Structure and large lagnetic entropy change of melt-spun La1-xCex(Fe0.92Co0.08)11.4Si1.6 alloys [J]. Chinese Journal of Materials Research, 2012, 26(5): 511
[2] (高贝贝, 钟喜春, 郑志刚等.熔体快淬La1-xCex(Fe0.92Co0.08)11.4Si1.6合金的结构和大磁熵变 [J]. 材料研究学报, 2012, 26(5): 511)
[3] Zhang T, Liu C, Zhang Y. Influence of hydrogen absorption and desorption on magnetocaloric effect of La0.6Pr0.4Fe11.4Si1.6B0.2 alloy [J]. Chinese Journal of Materials Research,2015, 29(11): 829
[3] (张 涛, 刘翠兰, 张 勇. 吸放氢处理对La0.6Pr0.4Fe11.4Si1.6B0.2合金磁热效应的影响 [J]. 材料研究学报, 2015, 29(11): 829)
[4] Zhang T B, Chen Y G, Tang Y B, et al. Recent developments and future directions of near room temperature magnetic refrigerant materials [J]. Journal of Functional Materials, 2007, 38(8): 1221
[4] (张铁邦, 陈云贵, 唐永柏等. 室温磁致冷材料的研究现状及发展趋势 [J]. 功能材料, 2007, 38(8): 1221)
[5] Jin P Y, Huang J H, Yang Z F, et al. Some new progresses on the magnetic refrigeration technology [J]. Chinese Rare Earths, 2014, 35(3): 101
[5] (金培育, 黄焦宏, 杨占峰等. 磁制冷技术的新进展 [J]. 稀土, 2014, 35(3): 101)
[6] Tegus O, Brück E, Buschow K H, et al. Transition-metal-based magnetic refrigerants for room-temperature applications [J]. Nature, 2002, 415(6868): 150
[7] Wada H, Morikawa T, Taniguchi K, et al. Giant magnetocaloric effect of MnAs1?xSbx in the vicinity of first-order magnetic transition [J]. Physica B: Condensed Matter, 2003, 328(1): 114
[8] Zhang H, Liu J, Zhang M X, et al. LaFe11.6Si1.4Hy/Sn magnetocaloric composites by hot pressing [J].Scripta Materialia,2016, 120: 58
[9] Liu Z G , Wu Q M, Sun N K, et al. Study of the microstructure, mechanical,and magnetic properties of LaFe11.6Si1.4Hy/Bi magnetocaloric composites [J]. Materials,2018, 11(6): 943
[10] Pecharsky V K, Gschneidner K A. Giant magnetocaloric effect in Gd5(Si2Ge2) [J]. Physical Review Letters,1997, 78(23): 4494
[11] Dan'Kov S Y, Tishin A M, Pecharsky V K, et al. Magnetic phase transitions and the magnetothermal properties of gadolinium [J]. Physical Review B,1998, 57(6): 3478
[12] Mandal K, Yan A, Kerschl P, et al. The study of magnetocaloric effect in R2Fe17 (R= Y, Pr) alloys [J]. Journal of Physics D: Applied Physics, 2004, 37(19): 2628
[13] Krenke T, Duman E, Acet M, et al. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys [J]. Nature materials, 2005, 4(6): 450
[14] Du J, Cui W, Zhang B Q, et al. Giant magnetocaloric effect in ε-(Mn0.83Fe0.17)3.25Ge antiferromagnet [J]. Applied physics letters, 2007, 90(4): 2510
[15] Sun N K, Li Y, Liu F, et al. Magnetism and magnetocaloric properties of Mn3Zn1–xSnxC and Mn3–xCrxZnC compounds [J]. Journal of Materials Science & Technology, 2012, 28(10): 941
[16] Ma L, Guillou F, Yibole H, et al. Structural, magnetic and magnetocaloric properties of (Mn, Co)2(Si, P) compounds [J]. Journal of Alloys and Compounds, 2015, 625(S1): 95
[17] Baibich M. N., Broto J. M., Fert A., et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices [J]. Physical review letters, 1988, 61(21): 2472
[18] Zhang Y, Zhang Z. Metamagnetic-transition-induced giant magnetoresistance in Mn2Sb1?xSnx(0<x<0.4) compounds [J]. Physical Review B, 2003, 67(13): 132405
[19] Li Y B, Li W F, Feng W J, et al. Magnetic, transport and magnetotransport properties of Mn3+xSn1?xC and Mn3ZnySn1?yC compounds [J]. Physical Review B, 2005, 72(2): 024411
[20] Stankiewicz J, Bartolome J. Spin disorder scattering in magnetic metallic alloys [J]. Physical Review Letters, 2002, 89(10): 106602
[21] Cheng J G, Matsubayashi K, Wu W, et al. Pressure induced superconductivity on the border of magnetic order in MnP [J]. Physical review letters, 2015, 114(11): 117001
[22] Lin F K, Wu W, Fan G Z, et al. Low-temperature physical properties of MnP0.8B0.2 single crystals [J]. Acta Physica Sinica, 2015, 64(15): 157402
[22] (林富锟, 吴 伟, 范国志等. MnP0.8B0.2单晶样品的低温物性研究 [J]. 物理学报, 2015,64(15): 157402)
[23] Sun N K, Zhang Y Q, Li Y B, et al. Magnetic, electronic transport and magneto-transport behaviours of (Co1?xMnx)2P compounds [J]. Journal of Physics D: Applied Physics, 2006, 39(20): 4304
[24] Sun N K, Li Y B, Li D, et al. Magnetic, electronic transport and magneto-transport behaviors of CoxFe1?xMnP compounds [J]. Journal of Alloys and Compounds, 2007, 429(1): 29
[25] Sj?str?m J, H?ggstr?m L, Sundqvist T, A study of the magnetic structure and 57Fe hyperfine interactions in FeMnP [J]. Philosophical Magazine B,1988, 57(6): 737
[26] Fujii S, Ishida S, Asano S. Electronic structures and magnetic properties of Fe2P, Co2P and CoMnP [J]. Journal of Physics F: Metal Physics,1988, 18(5): 971
[27] ?redniawa B, Zach R, Fornala P, et al. Crystal structure, magnetic and electronic properties of CoxFe1?xMnP system [J]. Journal of Alloys and Compounds, 2001, 317-318: 266
[28] Sun N K, Du S J, Guo J. Effect of B-doping on microstructure and magnetic properties of SmFe10Mo2 alloy [J]. Chinese Journal of Materials Research, 2015, 29(1): 55
[28] (孙乃坤, 杜胜杰, 郭 杰. B掺杂对SmFe10Mo2合金的结构及磁性的影响 [J]. 材料研究学报,2015, 29(1): 55)
[29] Zhong X C, Gao B B, Wang S S,et al. Magnetic properties and large magnetocaloric effects of amorphous and crystallized Gd-Co binary alloys [J]. Journal of Functional Materials, 2014, 1(45): 111
[29] (钟喜春, 高贝贝, 王珊珊等. Gd-Co二元非晶及晶态合金的磁性和大磁热效应 [J]. 功能材料, 2014, 1(45): 111)
[30] Du H F, Du A, Hu Y. Monte carlo simulation of magnetic monolayer films [J]. Chinese Journal of Computational Physics, 2006, 23(5): 583
[30] (杜海峰, 杜 安, 胡 勇. 磁性单层膜磁学性质的Monte Carlo模拟 [J]. 计算物理, 2006, 23(5): 583)
[31] Zhang Q, Guillou F, Wahl A, et al. Coexistence of inverse and normal magnetocaloric effect in A-site ordered NdBaMn2O6 [J]. Applied Physics Letters, 2010, 96(24): 242506
[32] Sun N K, Xu S N, Gao Y B, et al. Magnetism and magnetocaloric properties of Mn0.95Cr0.05As [J]. Physica B: Condensed Matter, 2011, 406(14): 2731
[33] Chattopadhyay M K, Manekar M A, Roy S B, Magnetocaloric effect in CeFe2 and Ru-doped CeFe2 alloys [J]. Journal of Physics D: Applied Physics,2006, 39(6): 1006
[34] Hu Y, Li Z B, Yang B,et al. Combined caloric effects in a multiferroic Ni-Mn-Ga alloy with broad refrigeration temperature region [J]. Applied Physics Letters: Materials, 2017, 5(4): 046103
[35] Stankiewicz J, Bartolomé J, Morales M, et al. Resistivity of RMn12-xFex alloys, Journal of Applied Physics, 90(56), 32(2001)
[36] S. Alexander, S. Helman, J.I. Balberg, Critical behavior of the electrical resistivity in magnetic systems [J]. Physical Review B, 1976, 13(1): 304
[37] Balberg I, Helman J S, Critical behavior of the resistivity in magnetic systems. II. Below Tc and in the presence of a magnetic field [J]. Physical Review B, 1978, 18(1): 303
[38] Sampathkumaran E V, Sengupta K, Rayaprol S, et al. Enhanced electrical resistivity before Néel order in the metals RCuAs2 [J]. Physical Review B, 2003, 91(3): 036603
[39] Zhang Y S, Zeng H B. On the anomalies in some physical properties at the Neel transition of γ-Fe-Mn-Ge alloys [J]. Journal of Physics: Condensed Matter, 1990, 2(50): 10033
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!