Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (12): 918-926    DOI: 10.11901/1005.3093.2019.329
ARTICLES Current Issue | Archive | Adv Search |
Kinetics of Dynamic Recrystallization of TB6 Ti-Alloy During Hot Compressive Deformation atTemperatures of β-phase Range
Delai OUYANG1,Shiqiang LU1,Xia CUI1(),Yong XU1,Haiming DU2,Huian ZHU1
1. School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2. Jiangxi Normal University, Nanchang 330022, China
Cite this article: 

Delai OUYANG,Shiqiang LU,Xia CUI,Yong XU,Haiming DU,Huian ZHU. Kinetics of Dynamic Recrystallization of TB6 Ti-Alloy During Hot Compressive Deformation atTemperatures of β-phase Range. Chinese Journal of Materials Research, 2019, 33(12): 918-926.

Download:  HTML  PDF(6086KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hot compression tests of as-forged Ti-alloy TB6 were conducted via thermecmaster-Z hot simulation test machine through rapid heating the alloy up to the temperature range for the presence of β-phase and then compression tests by strain rates of 0.001~1 s-1 at temperatures in the range of 825~1100℃, while the dynamic recrystallization (DRX) volume fraction were acquired by processing the collected rheological data during compression deformation with work hardening rate approach, then the kinetics of DRX of the alloy deformed at β-phase temperature was studied. The results show that the stress increases with the decrease of deformation temperature or the increase of strain rate, and the stress-strain curves present the type of DRX. With the decrease of strain rate and the increase of deformation temperature, the DRX volume fraction and the grain size of dynamic recrystallization increase. The DRX grain coarsening is observed for the alloy deformed at temperatures above 950℃ and strain rates below 0.001 s-1. The DRX kinetics curves possess three typical stages: slow increase-fast increase-slow increase, showing a typical "S" type characteristic. Furthermore, the strain corresponding to the presence of 50% DRX volume fraction was determined and the relevant DRX kinetics model of TB6 Ti-alloy is established.

Key words:  metallic materials      TB6 titanium alloy      work hardening rate      DRX      Kinetics     
Received:  04 July 2019     
ZTFLH:  TG 146.4  
Fund: National Natural Science Foundation of China(51761029);National Natural Science Foundation of China(51864035)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.329     OR     https://www.cjmr.org/EN/Y2019/V33/I12/918

Fig.1  Microstructure of TB6 titanium alloy
Fig.2  True stress-true strain cures of TB6 alloy deformed at different deformation conditions
Fig.3  Optical micrographs of specimens hot compressed with strain of 1.61: (a) 825℃,0.001 s-1; (b) 825℃, 0.01 s-1; (c) 825℃,0.1 s-1; (d) 825℃, 1 s-1; (e) 950℃, 0.001 s-1; (f) 1100℃, 0.001 s-1
Fig.4  Schematic diagram of stress-strain curves for dynamic recrystallization and virtual dynamic recovery
Fig.5  Schematic diagram of work hardening rate curve
Fig.6  Stress-strain curves (1-True curve, 2-Fitting curve) (a) and θ~σ curve (1-True curve, 2-Extrapolation curve) (b) of TB6 titanium alloy at deformation temperature 825℃ and strain rate 0.001 s-1
Fig.7  Stress-strain curves (1- Fitting curve, 2-Virtual dynamic recovery curve) (a) and DRX kinetics curve (b) of TB6 titanium alloy at deformation temperature 825℃ and strain rate 0.001 s-1
Fig.8  Stress-strain curves (1-True curve, 2-Fitting curve, 3-Virtual dynamic recovery curve)of TB6 titanium alloy at strain rate 0.001 s-1 and different deformation temperatures (a) 825℃, (b) 875℃, (c) 950℃, (d) 1100℃
Fig.9  θ-σ curves (1-True curve, 2-Extrapolation curve) of TB6 titanium alloy at strain rate 0.001 s-1 and different deformation temperatures (a)825℃, (b) 875℃, (c) 950℃, (d) 1100℃
Fig.10  DRX kinetics curves of TB6 titanium alloy at strain rate 0.001 s-1
Fig.11  DRX kinetics curves of TB6 titanium alloy at different deformation conditions
Fig.12  DRX kinetics curve of TB6 titanium alloy at deformation temperature 825℃ and strain rate 0.01 s-1
Fig.13  ε0.5 value of TB6 titanium alloy at different deformation conditions
Fig.14  Relation of ln[-ln(1-XdRX)] and ln[(ε-εc)/ε0.5]
[1] Kapoor R, Reddy G B, Sarkar A. Discontinuous dynamic recrystallization in α-Zr [J]. Mater. Sci. Eng., A, 2018, 718: 104
[2] Liu J, Wang X, Liu J, et al. Hot deformation and dynamic recrystallization behavior of Cu-3Ti-3Ni-0.5Si alloy [J]. J. Alloys Compd., 2019, 782: 224
[3] Nicola? A, Fiorucci G, Franchet J M, et al. Influence of strain rate on subsolvus dynamic and post-dynamic recrystallization kinetics of Inconel 718 [J]. Acta Mater., 2019, 174: 406
[4] Qu J, Xie X, Bi Z, et al. Hot deformation characteristics and dynamic recrystallization mechanism of GH4730 Ni-based superalloy [J]. J. Alloys Compd., 2019, 785: 918
[5] Chen M, Lin Y C, Ma X. The kinetics of dynamic recrystallization of 42CrMo steel [J]. Mater. Sci. Eng., A, 2012, 556: 260
[6] Xu Y, Chen C, Zhang X, et al. Dynamic recrystallization kinetics and microstructure evolution of an AZ91D magnesium alloy during hot compression [J]. Mater. Charact., 2018, 145: 39
[7] Ma C, Wang G C. Superplastic tensile experiment by the fixed m value method at high-temperature for titanium alloy TB6 [J]. Forging & Stamping Technology, 2016, 41(10): 88
[7] (马 超, 王高潮. TB6钛合金定m值法高温超塑性拉伸试验研究 [J]. 锻压技术. 2016, 41(10): 88)
[8] G?ken J, Fayed S, Skubisz P. Strain-Dependent Damping of Ti-10V-2Fe-3Al at Room Temperature [J]. Acta Phys. Pol., A, 2016, 130(6): 1352
[9] Illarionov A G, Trubochkin A V, Shalaev A M, et al. Isothermal Decomposition of β-Solid Solution in Titanium Alloy Ti-10 V-2Fe-3Al [J]. Met. Sci. Heat Treat., 2017, 58(11-12): 674
[10] Wu J, Zou S, Zhang Y, et al. Microstructures and mechanical properties of β forging Ti17 alloy under combined laser shock processing and shot peening [J]. Surf. Coat. Tech., 2017, 328: 283
[11] Bao R Q, Huang X, Cao C X. Deformation behavior and mechanisms of Ti-1023 alloy [J]. T Nonferr Metal Soc., 2006, 16(2): 274
[12] Ouyang D L, Fu M W, Lu S Q. Study on the dynamic recrystallization behavior of Ti-alloy Ti-10V-2Fe-3V in β processing via experiment and simulation [J]. Mater. Sci. Eng., A, 2014, 619(0): 26
[13] Ji G, Li Q, Li L. The kinetics of dynamic recrystallization of Cu-0.4Mg alloy [J]. Mater. Sci. Eng., A, 2013, 586: 197
[14] Jia D, Sun W, Xu D, et al. Dynamic recrystallization behavior of GH4169G alloy during hot compressive deformation [J]. J. Mater. Sci. Technol., 2019, 35(9): 1851
[15] Zhang Y, Liu P, Tian B H, et al. Dynamic recrystallization behavior of Cu-Ni-Si-P alloy [J]. T Mater Heat Treat, 2010, 31(7): 45
[15] (张 毅, 刘 平, 田保红等. Cu-Ni-Si-P合金动态再结晶行为 [J]. 材料热处理学报, 2010, 31(7): 45
[16] Ouyang D L, Cui X, Lu S Q, et al. Hot compressive deformation behavior and dynamic recrystallization of as-forged titanium alloy TB6 during β process [J]. Chin J Mater Res., 2019, 33(03): 218
[16] (欧阳德来, 崔 霞, 鲁世强等. 锻态TB6钛合金β相区压缩变形行为和动态再结晶 [J]. 材料研究学报. 2019, 33(03): 218)
[17] Prasad G V, Goerdeler M, Gottstein G. Work hardening model based on multiple dislocation densities [J]. Mater. Sci. Eng., A, 2005, 400-401: 231
[18] Rollett A D, Kocks U F. A Review of the Stages of Work Hardening [J]. Solid State Phenom., 1993, 35-36(36): 1
[19] Wang M, Li Y, Wang W, et al. Quantitative Analysis of Work Hardening and Dynamic Softening Behavior of low carbon alloy Steel Based on the Flow Stress [J]. Mater. Des., 2013, 45: 384
[20] Wahabi M E, Cabrera J M, Prado J M. Hot working of two AISI 304 steels: a comparative study [J]. Mater. Sci. Eng., A, 2003, 343(1): 116
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!